Wednesday, 25 December 2013

`int (x+1) / sqrt(3x^2+6x) dx` Find the indefinite integral

`int (x + 1)/sqrt(3x^2+6x) dx`


To solve, apply u-substitution method.



`u = 3x^2+6x`


`du = (6x+6)dx`


`du = 6(x + 1)dx`


`1/6du = (x +1)dx`



Expressing the integral in terms of u, it becomes


`= int 1/sqrt(3x^2 + 6x)*(x + 1)dx`


`= int 1/sqrtu *1/6 du`


`= 1/6 int1/sqrtu du`


Then, convert the radical to exponent form.


`= 1/6 int 1/u^(1/2)du`


Also, apply the negative exponent rule `a^(-m) = 1/a^m` .


`= 1/6 int u^(-1/2)...

`int (x + 1)/sqrt(3x^2+6x) dx`


To solve, apply u-substitution method.



`u = 3x^2+6x`


`du = (6x+6)dx`


`du = 6(x + 1)dx`


`1/6du = (x +1)dx`



Expressing the integral in terms of u, it becomes


`= int 1/sqrt(3x^2 + 6x)*(x + 1)dx`


`= int 1/sqrtu *1/6 du`


`= 1/6 int1/sqrtu du`


Then, convert the radical to exponent form.


`= 1/6 int 1/u^(1/2)du`


Also, apply the negative exponent rule `a^(-m) = 1/a^m` .


`= 1/6 int u^(-1/2) du`


To take the integral of this, apply the formula `int x^n dx = x^(n+1)/(n+1)+C` .


`= 1/6 *u^(1/2)/(1/2) + C`


`= 1/6 * (2u^(1/2))/1+C`


`=u^(1/2)/3+C`


`= sqrtu /3 + C`


And, substitute back `u = 3x^2+6x` .


`= sqrt(3x^2+6x) /3 + C`



Therefore, `int (x+1)/sqrt(3x^2+6x)dx = sqrt(3x^2+6x) /3 + C` .

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...