`int (x + 1)/sqrt(3x^2+6x) dx`
To solve, apply u-substitution method.
`u = 3x^2+6x`
`du = (6x+6)dx`
`du = 6(x + 1)dx`
`1/6du = (x +1)dx`
Expressing the integral in terms of u, it becomes
`= int 1/sqrt(3x^2 + 6x)*(x + 1)dx`
`= int 1/sqrtu *1/6 du`
`= 1/6 int1/sqrtu du`
Then, convert the radical to exponent form.
`= 1/6 int 1/u^(1/2)du`
Also, apply the negative exponent rule `a^(-m) = 1/a^m` .
`= 1/6 int u^(-1/2)...
`int (x + 1)/sqrt(3x^2+6x) dx`
To solve, apply u-substitution method.
`u = 3x^2+6x`
`du = (6x+6)dx`
`du = 6(x + 1)dx`
`1/6du = (x +1)dx`
Expressing the integral in terms of u, it becomes
`= int 1/sqrt(3x^2 + 6x)*(x + 1)dx`
`= int 1/sqrtu *1/6 du`
`= 1/6 int1/sqrtu du`
Then, convert the radical to exponent form.
`= 1/6 int 1/u^(1/2)du`
Also, apply the negative exponent rule `a^(-m) = 1/a^m` .
`= 1/6 int u^(-1/2) du`
To take the integral of this, apply the formula `int x^n dx = x^(n+1)/(n+1)+C` .
`= 1/6 *u^(1/2)/(1/2) + C`
`= 1/6 * (2u^(1/2))/1+C`
`=u^(1/2)/3+C`
`= sqrtu /3 + C`
And, substitute back `u = 3x^2+6x` .
`= sqrt(3x^2+6x) /3 + C`
Therefore, `int (x+1)/sqrt(3x^2+6x)dx = sqrt(3x^2+6x) /3 + C` .
No comments:
Post a Comment