`inte^x/((e^(2x)+1)(e^x-1))dx`
Apply integral substitution:`u=e^x`
`=>du=e^xdx`
`=int1/((u^2+1)(u-1))du`
Now let's create partial fraction template for the integrand,
`1/((u^2+1)(u-1))=A/(u-1)+(Bu+C)/(u^2+1)`
Multiply the equation by the denominator,
`1=A(u^2+1)+(Bu+C)(u-1)`
`=>1=Au^2+A+Bu^2-Bu+Cu-C`
`=>1=(A+B)u^2+(-B+C)u+A-C`
Equating the coefficients of the like terms,
`A+B=0` -------------------------(1)
`-B+C=0` -----------------------(2)
`A-C=1` -----------------------(3)
Now we have to solve the above three linear equations to get A, B and C,
From equation 1, `B=-A`
Substitute B in equation 2,
`-(-A)+C=0`
`=>A+C=0` ---------------------(4)
Add equations 3 and 4,
`2A=1`
...
`inte^x/((e^(2x)+1)(e^x-1))dx`
Apply integral substitution:`u=e^x`
`=>du=e^xdx`
`=int1/((u^2+1)(u-1))du`
Now let's create partial fraction template for the integrand,
`1/((u^2+1)(u-1))=A/(u-1)+(Bu+C)/(u^2+1)`
Multiply the equation by the denominator,
`1=A(u^2+1)+(Bu+C)(u-1)`
`=>1=Au^2+A+Bu^2-Bu+Cu-C`
`=>1=(A+B)u^2+(-B+C)u+A-C`
Equating the coefficients of the like terms,
`A+B=0` -------------------------(1)
`-B+C=0` -----------------------(2)
`A-C=1` -----------------------(3)
Now we have to solve the above three linear equations to get A, B and C,
From equation 1, `B=-A`
Substitute B in equation 2,
`-(-A)+C=0`
`=>A+C=0` ---------------------(4)
Add equations 3 and 4,
`2A=1`
`=>A=1/2`
`B=-A=-1/2`
Plug in the value of A in equation 4,
`1/2+C=0`
`=>C=-1/2`
Plug in the values of A,B and C in the partial fraction template,
`1/((u^2+1)(u-1))=(1/2)/(u-1)+((-1/2)u+(-1/2))/(u^2+1)`
`=1/(2(u-1))-(1(u+1))/(2(u^2+1))`
`=1/2[1/(u-1)-(u+1)/(u^2+1)]`
`int1/((u^2+1)(u-1))du=int1/2[1/(u-1)-(u+1)/(u^2+1)]du`
Take the constant out,
`=1/2int(1/(u-1)-(u+1)/(u^2+1))du`
Apply the sum rule,
`=1/2[int1/(u-1)du-int(u+1)/(u^2+1)du]`
`=1/2[int1/(u-1)du-int(u/(u^2+1)+1/(u^2+1))du]`
Apply the sum rule for the second integral,
`=1/2[int1/(u-1)du-intu/(u^2+1)du-int1/(u^2+1)du]` ------------------(1)
Now let's evaluate each of the above three integrals separately,
`int1/(u-1)du`
Apply integral substitution:`v=u-1`
`dv=du`
`=int1/vdv`
Use the common integral:`int1/xdx=ln|x|`
`=ln|v|`
Substitute back `v=u-1`
`=ln|u-1|` -------------------------------------------(2)
`intu/(u^2+1)du`
Apply integral substitution:`v=u^2+1`
`dv=2udu`
`int1/v(dv)/2`
Take the constant out and use standard integral:`int1/xdx=ln|x|`
`=1/2ln|v|`
Substitute back `v=u^2+1`
`=1/2ln|u^2+1|` ----------------------------------------(3)
`int1/(u^2+1)du`
Use the common integral:`int1/(x^2+a^2)dx=1/aarctan(x/a)`
`=arctan(u)` ------------------------------------------(4)
Put the evaluation(2 , 3 and 4) of all the three integrals in (1) ,
`=1/2[ln|u-1|-1/2ln|u^2+1|-arctan(u)]`
Substitute back `u=e^x` and add a constant C to the solution,
`=1/2[ln|e^x-1|-1/2ln|e^(2x)+1|-arctan(e^x)]+C`
No comments:
Post a Comment