Wednesday, 29 January 2014

`y = xarctan(2x)-1/4ln(1+4x^2)` Find the derivative of the function

The derivative of y in terms of x is denoted by  `(dy)/(dx)` or `y’'`


 For the given problem: `y = xarctan(2x) -1/4ln(1+4x^2)` , we may apply the basic differentiation property:


`d/(dx) (u-v) = d/(dx) (u) - d/(dx) (v)`


Then the derivative of the function can be set-up as:


`d/(dx)y =d/(dx)[ xarctan(2x) -1/4ln(1+4x^2)]`


`y ' = d/(dx) xarctan(2x) -d/(dx) 1/4ln(1+4x^2)`



For the derivative of `d/(dx)[ xarctan(2x)` , we apply the Product Rule: `d/(dx)(u*v) =...

The derivative of y in terms of x is denoted by  `(dy)/(dx)` or `y’'`


 For the given problem: `y = xarctan(2x) -1/4ln(1+4x^2)` , we may apply the basic differentiation property:


`d/(dx) (u-v) = d/(dx) (u) - d/(dx) (v)`


Then the derivative of the function can be set-up as:


`d/(dx)y =d/(dx)[ xarctan(2x) -1/4ln(1+4x^2)]`


`y ' = d/(dx) xarctan(2x) -d/(dx) 1/4ln(1+4x^2)`



For the derivative of `d/(dx)[ xarctan(2x)` , we apply the Product Rule: `d/(dx)(u*v) = u’*v =+u*v’` .


`d/(dx)[ xarctan(2x)] = d/(dx)(x) *arctan(2x)+ x * d/(dx)arctan(2x)` .


Let `u=x` then ` u' = 1`


   `v=arctan(2x)` then `dv= 2/(4x^2+1)`


Note: `d/(dx)arctan(u)= (du)/(u^2+1)`



Then,


`d/(dx)(x) *arctan(2x)+ x * d/(dx)arctan(2x)`


`= 1 * arctan(2x) +x * 2/(4x^2+1)`


`= arctan(2x) +(2x)/(4x^2+1)`



For the derivative of  `d/(dx) 1/4ln(1+4x^2)` , we apply the basic derivative property:


`d/(dx) c*f(x) = c d/(dx) f(x)` .


Then,


`d/(dx) 1/4ln(1+4x^2)= 1/4 d/(dx) ln(1+4x^2)`


Apply the basic derivative formula for natural logarithm function: `d/(dx) ln(u)= (du)/u` .


 Let `u =1+4x^2` then `du = 8x`


`1/4d/(dx) ln(1+4x^2) = 1/4 *8x/(1+4x^2)`


                             ` =(2x)/(1+4x^2)`



Combining the results, we get:


`y' = d/(dx)[ xarctan(2x)] -d/(dx)[ 1/4ln(1+4x^2)]`


`y ' = [arctan(2x) +(2x)/(4x^2+1)] - (2x)/(1+4x^2)`


`y ' = arctan(2x) +(2x)/(4x^2+1) - (2x)/(1+4x^2)`


`y ' = arctan(2x) +0`


`y'=arctan(2x)`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...