Tuesday, 18 February 2014

`int 2 / (7e^x + 4) dx` Find the indefinite integral

To evaluate the given integral problem:` int 2/(7e^x+4)dx` , we may apply u-substitution using:  `u= e^x ` then `du = e^x dx` .


 Plug-in `u = e^x` on `du= e^x dx` , we get: `du = u dx` or `(du)/u =dx`


The integral becomes:


`int 2/(7e^x+4)dx =int 2/(7u+4)* (du)/u`


                         `=int 2/(7u^2+4u)du`


 Apply the basic properties of integration:` int c*f(x) dx= c int f(x)...

To evaluate the given integral problem:` int 2/(7e^x+4)dx` , we may apply u-substitution using:  `u= e^x ` then `du = e^x dx` .


 Plug-in `u = e^x` on `du= e^x dx` , we get: `du = u dx` or `(du)/u =dx`


The integral becomes:


`int 2/(7e^x+4)dx =int 2/(7u+4)* (du)/u`


                         `=int 2/(7u^2+4u)du`


 Apply the basic properties of integration:` int c*f(x) dx= c int f(x) dx` .


`int 2/(7u^2+4u)du =2int 1/(7u^2+4u)du`


Apply completing the square: `7u^2+4u =(sqrt(7)u+2/sqrt(7))^2 -4/7`


`2int 1/(7u^2+4u)du =2int 1/((sqrt(7)u+2/sqrt(7))^2 -4/7)du`




Let `v =sqrt(7)u+2/sqrt(7)` then `dv = sqrt(7) du`  or `(dv)/sqrt(7) = du` .


The integral becomes: 


`2int 1/(7u^2+4u)du =2 int 1/(v^2 -4/7) *(dv)/sqrt(7)`


Rationalize the denominator:


`2 int 1/(v^2 -4/7) *(dv)/sqrt(7) *sqrt(7)/sqrt(7)`


`= 2 int (sqrt(7)dv)/ ( 7*(v^2 -4/7))`


`=2 int (sqrt(7)dv)/ ( 7v^2 -4)`



From the table of integrals, we may apply `int dx/(x^2-a^2) = 1/(2a)ln[(u-a)/(u+a)]+C`


 Let:` w = sqrt(7)v` then `dw = sqrt(7) dv`


`2int (sqrt(7) dv)/ ( 7v^2 -4) =2int (sqrt(7) dv)/ (( sqrt(7)v)^2 -2^2)`


                  `= 2 int (dw)/ (w^2-2^2)`


                 `= 2 *1/(2*2)ln[(w-2)/(w+2)]+C`


                 `=1/2ln[(w-2)/(w+2)]+C`


Recall we let: `w =sqrt(7)v` and `v =sqrt(7)u+2/sqrt(7)` .


Then, `w=sqrt(7)*[sqrt(7)u+2/sqrt(7)] = 7u +2`


Plug-in `u =e^x` on `w=7u +2` , we get: `w= 7e^x+2`


The indefinite integral will be:


`int 2/(7e^x+4)dx =1/2ln[(7e^x+2-2)/(7e^x+2+2)]+C`


                     ` =1/2ln[(7e^x)/(7e^x+4)]+C`



No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...