Given curves are ,
`y=(b/a)sqrt(a^2-x^2) , y=0`
let `f(x) =(b/a)sqrt(a^2-x^2)`
and `g(x)=0`
In order to find the Centroid of the region bounded by the curves ,
first we have to find the area bounded by the curves ,so ,
now in order to find the area , we have to find the intersecting points of the curves. This can be obtained by equating f(x) and g(x) .
=>` f(x) = g(x)`
=> `(b/a)sqrt(a^2-x^2) =0`
=> `sqrt(a^2-x^2) =0`
=> `x^2 = a^2`
=> `x= +-a`---------(1)
so the curves `f(x)>=g(x) on [-a, a]`
so the area `= int _a ^b [f(x) -g(x)]dx` where the lower bound is -a, and the upper bound is a
`= int _-a ^a [(b/a)sqrt(a^2 - x^2) -0]dx`
`=int_-a^a[(b/a)sqrt(a^2 - x^2)]dx`
The function which is being integrated is an even function so,
=`2int_0^a[(b/a)sqrt(a^2 - x^2)]dx`
=`2(b/a) int_0^a[sqrt(a^2 - x^2)]dx`
let `x=a sin(theta)` ------(2)
so , `dx = a cos(theta) d(theta)`
but from (1) and (2) we get
`x=+-a , x= asin(theta)` is
`sin(theta) = +-1`
=> `theta = sin^(-1) (+-1)`
so` theta = +-(pi/2)`
so ,now with the new integrals we get
area` = 2(b/a) int_0^a[sqrt(a^2 - x^2)]dx`
= `2(b/a) int_(0) ^(pi/2) sqrt(a^2 - a^2 sin^2 (theta)) a cos(theta) d(theta)`
= `2(b/a) int_(0) ^(pi/2) sqrt(a^2(1 - sin^2 (theta))) a cos(theta) d(theta)`
=`2(b/a) int_(0) ^(pi/2) sqrt(a^2( cos^2 (theta))) a cos(theta) d(theta)`
=`2(b/a) int_(0) ^(pi/2) (a cos (theta)) a cos(theta) d(theta)`
=`2(b/a)int_(0) ^(pi/2) (acos (theta))^2 d(theta)`
=`2(b/a)(a^2)int_(0) ^(pi/2) (cos^2 (theta)) d(theta)`
we can right the above integral as
=`(2)(b/a) (a^2)int_0 ^(pi/2) (cos^2 (theta)) d(theta)`
as we know that `int cos^2(x) dx = (1/2)(x+(1/2)sin (2x))`
now ,
area = `(2)(b/a) (a^2)int_0 ^(pi/2) (cos^2 (theta)) d(theta)`
=`(2)(b/a) (a^2) [(1/2)(x+(1/2)sin (2x))]_0 ^(pi/2)`
= `2(b/a)(a^2)[((1/2)((pi/2)+(1/2)sin (2(pi/2))))-(1/2)((0)+(1/2)sin (2(0)))]`
=`2(b/a)(a^2)[((1/2)((pi/2)+(0)))-0]`
=`2(b/a) a^2 [pi/4]`
=` ((pi a^2)/2)*(b/a)`
=`(pi*a*b)/(2)`
Now the centroid of the region bounded the curves is given as ,
let `(x_1,y_1)` be the co- ordinates of the centroid so ,
`x_1` is given as
`x_1 = (1/(area)) int _a^b x[f(x)-g(x)] dx`
where the limits `a= -a , b= a`
so,
`x_1 = (1/(area)) int _-a^a x[((b/a)sqrt(a^2-x^2))-(0)] dx`
=`(1/((pi*a*b)/2)) int _-a^a x[((b/a)sqrt(a^2-x^2))] dx`
=`(2/((pi*a*b))) int _-a^a x[((b/a)sqrt(a^2-x^2))] dx`
let` u = a^2 -x^2 => du = -2x dx`
`(-1/2)du = xdx`
The bounds are then `u = a^2 - (a^2) = 0` and `u=a^2-(-a)^2 = 0`
so,
`= (2/((pi*a*b))) int _0^0 [((b/a)sqrt(a^2-x^2))] dx`
`= 0` since for `int_a^b g(u) du = G(a) - G(b)` it follows that `int_0^0 g(u) du = G(0) - G(0) = 0`
so, `x_1 = 0`
and now let us `y_1` and so ,
`y_1` is given as
`y_1 = (1/(area)) int _a^b (1/2) [f^2(x)-g^2(x)] dx`
where the `a= -a , b= a`
so ,
= `(1/((pi*a*b)/(2))) int _-a ^a (1/2)[((b/a)sqrt(a^2 -x^2))^2 -[0]^2] dx`
= `(2/((pi*a*b))) int _-a ^a (1/2)[((b/a)sqrt(a^2 -x^2))^2] dx`
= `(2/((pi*a*b))) (1/2) int _-a ^a [((b/a)sqrt(a^2 -x^2))^2] dx`
= `(1/((pi*a*b))) int _-a ^a [((b/a)sqrt(a^2 -x^2))^2] dx`
= `(1/((pi*a*b)))(b/a)^2 int _-a ^a [(sqrt(a^2 -x^2))^2] dx`
since the function which is being integrated is even function so ,we can write the above equation as
= `(2/((pi*a*b)))(b/a)^2 int _0 ^a [(sqrt(a^2 -x^2))^2] dx`
= `(2/((pi*a*b)))(b/a)^2 int _0 ^a [(a^2 -x^2)] dx`
= `(2/((pi*a*b)))(b/a)^2 [((a^2)x -(x^3)/3)]_0 ^a`
= `(2/((pi*a*b)))(b/a)^2 [[((a^2)a -(a^3)/3)]-[((0^2)a -(0^3)/3)]]`
= `(2/((pi*a*b)))(b/a)^2 [[((a^2)a -(a^3)/3)]-[0]]`
= `(2/((pi*a*b)))(b/a)^2 [((a^3) -(a^3)/3)]`
= `(2/((pi*a*b)))(b/a)^2 [ (2*(a^3))/3)]`
= `(2/((pi*b)))(b)^2 [ (2)/3]`
= `(2/((pi)))(b) [ (2)/3]`
=`((4b)/(3pi)) `
so the centroid of the area bounded by the curves is
= `(x_1,y_1)= (0,(4b)/(3pi))`
No comments:
Post a Comment