Given
`int x^2/sqrt(36-x^2) dx`
This can be solved by using the Trigonometric substitutions (Trig substitutions)
when the integral contains `sqrt(a-bx^2)` then we have to take
`x=sqrt(a/b) sin(t)` in order to solve the integral easily
so here , For
`int x^2/sqrt(36-x^2) dx`
`x` is given as
`x= sqrt(36/1) sin(t) = 6sin(t) `
=> `dx = 6 cos(t) dt`
so ,
`int x^2/sqrt(36-x^2) dx`
=`int (6sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`
= `int 36(sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`
=`...
Given
`int x^2/sqrt(36-x^2) dx`
This can be solved by using the Trigonometric substitutions (Trig substitutions)
when the integral contains `sqrt(a-bx^2)` then we have to take
`x=sqrt(a/b) sin(t)` in order to solve the integral easily
so here , For
`int x^2/sqrt(36-x^2) dx`
`x` is given as
`x= sqrt(36/1) sin(t) = 6sin(t) `
=> `dx = 6 cos(t) dt`
so ,
`int x^2/sqrt(36-x^2) dx`
=`int (6sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`
= `int 36(sin(t))^2/sqrt(36-(6sin(t))^2) (6 cos(t) dt)`
=` int ((36)*(6)(sin(t))^2 *cos(t)) /sqrt(36-(6sin(t))^2) dt`
=`int (216(sin(t))^2 *cos(t)) /sqrt(36-36(sin(t))^2) dt`
= `int (216(sin(t))^2 *cos(t)) /sqrt(36(1-(sin(t))^2)) dt`
=`int (216(sin(t))^2 *cos(t)) /sqrt(36(cos(t))^2) dt`
=`int (216(sin(t))^2 *cos(t)) /(6(cos(t))) dt`
= `int (216/6) sin^2(t) dt`
= `int 36 sin^2(t) dt`
= `36 int sin^2(t) dt`
= `36 int (1-cos(2t))/2 dt`
= `(36/2) int (1-cos(2t)) dt`
= `18 [int 1 dt - int cos(2t) dt]+c`
= `18[t- (1/2)sin(2t)]+c`
but we know that
`x= 6sin(t)`
=> `x/6 = sin (t)`
=> `t= sin^(-1) (x/6) or arcsin(x/6)`
so,
`18[t- (1/2)sin(2t)]+c`
= `18[(arcsin(x/6))- (1/2)sin(2(arcsin(x/6)))]+c`
so,
`int x^2/sqrt(36-x^2) dx `
=`18arcsin(x/6)- 9sin(2(arcsin(x/6)))+c`
No comments:
Post a Comment