Friday 22 August 2014

`int 1/((x-1)sqrt(4x^2-8x+3)) dx` Find the indefinite integral

`int1/((x-1)sqrt(4x^2-8x+3))dx`


Let's rewrite the integral by completing the square of the term in denominator,


`=int1/((x-1)sqrt((2x-2)^2-1))dx`


Apply the integral substitution: `u=2x-2`


`du=2dx`


`=>dx=(du)/2`


`u=2(x-1)`


`=>(x-1)=u/2`


`=int1/((u/2)sqrt(u^2-1))(du)/2`


`=int1/(usqrt(u^2-1))du`


Again apply integral substitution: `u=sec(v)`


`du=sec(v)tan(v)dv`


`=int1/(sec(v)sqrt(sec^2(v)-1))sec(v)tan(v)dv`


`=inttan(v)/(sqrt(sec^2(v)-1))dv`


Use the trigonometric identity:`sec^2(x)=1+tan^2(x)`


`=inttan(v)/sqrt(1+tan^2(v)-1)dv`


`=inttan(v)/sqrt(tan^2(v))dv`


`=inttan(v)/tan(v)dv`   assuming `tan(v) >=0`


`=intdv`


`=v`


Substitute back `v=arcsec(u)`  and  `u=(2x-2)`


and add a constant C to the solution,


`=arcsec(2x-2)+C`

`int1/((x-1)sqrt(4x^2-8x+3))dx`


Let's rewrite the integral by completing the square of the term in denominator,


`=int1/((x-1)sqrt((2x-2)^2-1))dx`


Apply the integral substitution: `u=2x-2`


`du=2dx`


`=>dx=(du)/2`


`u=2(x-1)`


`=>(x-1)=u/2`


`=int1/((u/2)sqrt(u^2-1))(du)/2`


`=int1/(usqrt(u^2-1))du`


Again apply integral substitution: `u=sec(v)`


`du=sec(v)tan(v)dv`


`=int1/(sec(v)sqrt(sec^2(v)-1))sec(v)tan(v)dv`


`=inttan(v)/(sqrt(sec^2(v)-1))dv`


Use the trigonometric identity:`sec^2(x)=1+tan^2(x)`


`=inttan(v)/sqrt(1+tan^2(v)-1)dv`


`=inttan(v)/sqrt(tan^2(v))dv`


`=inttan(v)/tan(v)dv`   assuming `tan(v) >=0`


`=intdv`


`=v`


Substitute back `v=arcsec(u)`  and  `u=(2x-2)`


and add a constant C to the solution,


`=arcsec(2x-2)+C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...