Thursday, 16 October 2014

Use the Integral Test to determine the convergence or divergence of the p-series.

The Integral test is applicable if f is positive and decreasing function on the infinite interval where and . Then the series converges if and only if the improper integral converges. If the integral diverges then the series also diverges.

For the given series , the then applying , we consider:


.  


As shown on the graph of f(x), the function is positive on the interval . As x at the denominator side gets larger, the function value decreases.


 


Therefore, we may determine the convergence of the improper integral as:



Apply the Law of exponents: .



Apply the Power rule for integration: .



                               


                               


                               


Apply the definite integral formula: .



                         


                         


                         


The  implies that the integral diverges.


Note: Divergence test states if or does not exist then the  diverges.


Conclusion: The integral  diverges therefore the series  must also diverges. 

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...