The parametric equations are:
`x=t^3-6t` ------------------(1)
`y=t^2` -----------------(2)
From equation 2,
`t=+-sqrt(y)`
Substitute `t=sqrt(y)` in equation (1),
`x=(sqrt(y))^3-6sqrt(y)`
`=>x=ysqrt(y)-6sqrt(y)` ----------------(3)
Now substitute `t=-sqrt(y)` in equation (1),
`x=-ysqrt(y)+6sqrt(y)` ----------------(4)
The curve will cross itself at the point, where x and y values are same for different values of t.
So setting the equations 3 and 4 equal will give the point,
`ysqrt(y)-6sqrt(y)=-ysqrt(y)+6sqrt(y)`
`=>ysqrt(y)+ysqrt(y)=6sqrt(y)+6sqrt(y)`
`=>2ysqrt(y)=12sqrt(y)`
`=>2y=12`
`=>y=6`
Plug in the value of y...
The parametric equations are:
`x=t^3-6t` ------------------(1)
`y=t^2` -----------------(2)
From equation 2,
`t=+-sqrt(y)`
Substitute `t=sqrt(y)` in equation (1),
`x=(sqrt(y))^3-6sqrt(y)`
`=>x=ysqrt(y)-6sqrt(y)` ----------------(3)
Now substitute `t=-sqrt(y)` in equation (1),
`x=-ysqrt(y)+6sqrt(y)` ----------------(4)
The curve will cross itself at the point, where x and y values are same for different values of t.
So setting the equations 3 and 4 equal will give the point,
`ysqrt(y)-6sqrt(y)=-ysqrt(y)+6sqrt(y)`
`=>ysqrt(y)+ysqrt(y)=6sqrt(y)+6sqrt(y)`
`=>2ysqrt(y)=12sqrt(y)`
`=>2y=12`
`=>y=6`
Plug in the value of y in equation 4,
`x=-6sqrt(6)+6sqrt(6)`
`=>x=0`
So the curve crosses itself at the point (0,6). Note that,we can find this point by plotting the graph also.
Now let's find t for this point,
`t=+-sqrt(y)=+-sqrt(6)`
The derivative `dy/dx` is the slope of the line tangent to the parametric graph `(x(t),y(t))`
`dy/dx=(dy/dt)/(dx/dt)`
`y=t^2`
`=>dy/dt=2t`
`x=t^3-6t`
`=>dx/dt=3t^2-6`
`dy/dx=(2t)/(3t^2-6)`
For `t=sqrt(6)` , `dy/dx=(2sqrt(6))/(3(sqrt(6))^2-6)=(2sqrt(6))/(18-6)=sqrt(6)/6`
Equation of the tangent line can be found by using point slope form of the line,
`y-6=sqrt(6)/6(x-0)`
`=>y=sqrt(6)/6x+6`
For `t=-sqrt(6)` , `dy/dx=(2(-sqrt(6)))/(3(-sqrt(6))^2-6)=(-2sqrt(6))/(18-6)=(-sqrt(6))/6`
Equation of the tangent line will be:
`y-6=(-sqrt(6))/6(x-0)`
`=>y=(-sqrt(6))/6x+6`
Equations of the tangent line where the curve crosses itself are:
`y=sqrt(6)/6x+6` and `y=-sqrt(6)/6x+6`
No comments:
Post a Comment