Sunday, 30 November 2014

`int tln(t+1) dt` Find the indefinite integral

Recall that indefinite integral follows `int f(x) dx = F(x) +C` where:


`f(x)` as the integrand function


`F(x)` as the antiderivative of `f(x)`


`C` as the constant of integration.


 For the given  integral problem: `int t ln(t+1) dt` , we may apply u-substitution by letting:


`u = t+1` that can be rearrange as `t = u-1` .


The derivative of u is `du= dt` .


Plug-in the values, we get:


`int t ln(t+1) dt= int (u-1) ln(u)...

Recall that indefinite integral follows `int f(x) dx = F(x) +C` where:


`f(x)` as the integrand function


`F(x)` as the antiderivative of `f(x)`


`C` as the constant of integration.


 For the given  integral problem: `int t ln(t+1) dt` , we may apply u-substitution by letting:


`u = t+1` that can be rearrange as `t = u-1` .


The derivative of u is `du= dt` .


Plug-in the values, we get:


`int t ln(t+1) dt= int (u-1) ln(u) du`


Apply integration by parts: `int f*g'=f*g - int g*f'` .


We may let:


       `f =ln(u)` then `f' =(du)/u`


       `g' =u-1 du` then  `g=u^2/2 -u `


Note: `g =int g' = int (u+1) du` .


`int (u-1) du =int (u) du- int (1) du`


                       `= u^(1+1)/(1+1) - 1u`


                       `= u^2/2 - u`


Applying the formula for integration by parts, we set it up as:


`int (u-1) ln(u) du = ln(u) * (u^2/2-u) - int(u^2/2-u) *(du)/u`


                                   `=(u^2ln(u))/2-u*ln(u) - int(u^2/(2u)-u/u) du`


                                   `=(u^2ln(u))/2-u*ln(u) - int(u/2-1) du`


For the integral part:  `int (u/2-1)  du`, we apply the basic integration property:  `int (u-v) dx = int (u) dx - int (v) dx` .


`int(u/2-1) du=int(u/2) du-int (1) du`


                        ` = 1/2 int u - 1 int du`


                        `= 1/2*(u^2/2) - 1*u+C`


                        `= u^2/4 -u+C`


Applying  `int(u/2-1) du=u^2/4 -u+C` , we get:


`int (u-1) ln(u) du =(u^2ln(u))/2-uln(u) - int(u/2-1) du`


                                  `=(u^2ln(u))/2-u*ln(u) - [u^2/4 -u]+C`


                                   `=(u^2ln(u))/2-u*ln(u) - u^2/4 +u+C`


Plug-in `u = t+1` on `(u^2ln(u))/2-u*ln(u) - u^2/4 +u+C` , we get the complete indefinite integral as:


`int t ln(t+1) dt=((t+1)^2ln(t+1))/2-(t+1)ln(t+1) - (t+1)^2/4 +t+1+C`


                       OR  `[(t+1)^2/2-t-1]ln(t+1) - (t+1)^2/4 +t+1+C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...