Monday, 17 November 2014

`sum_(n=2)^oo (-1)^n/(nlnn)` Determine whether the series converges absolutely or conditionally, or diverges.

To determine the convergence or divergence of the series `sum_(n=2)^oo (-1)^n/(nln(n))` , we may apply Alternating Series Test.


In Alternating Series Test, the series `sum (-1)^n a_n` is convergent if:


1) `a_n` is monotone and decreasing sequence.


2) `lim_(n-gtoo) a_n =0`


3) `a_ngt=0`


For the series `sum_(n=2)^oo (-1)^n/(nln(n))` , we have:


`a_n = 1/(nln(n))` which is a positive, continuous, and decreasing sequence from `N=2.`


Note: As "`n` " increases, the `nln(n)` increases then `1/(nln(n))` decreases.


...

To determine the convergence or divergence of the series `sum_(n=2)^oo (-1)^n/(nln(n))` , we may apply Alternating Series Test.


In Alternating Series Test, the series `sum (-1)^n a_n` is convergent if:


1) `a_n` is monotone and decreasing sequence.


2) `lim_(n-gtoo) a_n =0`


3) `a_ngt=0`


For the series `sum_(n=2)^oo (-1)^n/(nln(n))` , we have:


`a_n = 1/(nln(n))` which is a positive, continuous, and decreasing sequence from `N=2.`


Note: As "`n` " increases, the `nln(n)` increases then `1/(nln(n))` decreases.


Then, we set-up the limit as :


`lim_(n-gtoo)1/(nln(n))= 1/oo =0`


By alternating series test criteria, the series` sum_(n=2)^oo (-1)^n/(nln(n))`  converges.


The series `sum_(n=2)^oo (-1)^n/(nln(n))`  has positive and negative elements. Thus, we must verify if the series converges absolutely or conditionally. Recall:


a) Absolute Convergence:  `sum a_n`  is absolutely convergent if `sum|a_n|`   is convergent.  


b) Conditional Convergence:  `sum a_n` is conditionally convergent if `sum|a_n|`  is divergent and `sum a_n`  is convergent.  


We evaluate the `sum |a_n|` as :


`sum_(n=2)^oo |(-1)^n/(nln(n))|=sum_(n=2)^oo 1/(nln(n))`


Applying integral test for convergence, we evaluate the series as:


`int_2^oo1/(nln(n))dn=lim_(n-gtoo) int_2^t 1/(nln(n))dn`


Apply u-substitution: `u =ln(n)` then `du =1/ndn` .


`int 1/(nln(n))dn =int 1/(ln(n))*1/ndn `


                       `=int 1/u du`


                       ` =ln|u|`


Plug-in `u=ln(n)` on the indefinite integral `ln|u|` , we get:


`int_2^t 1/(nln(n))dn =ln|ln(n)||_2^t`


Applying definite integral formula: `F(x)|_a^b = F(b)-F(a)` .


`ln|ln(n)||_2^t =ln|ln(t)|-ln|ln(2)|`


Then, the limit becomes:


`lim_(n-gtoo) int_2^t1/(nln(n))dn =lim_(n-gtoo) [ln|ln(t)|-ln|ln(2)|]`


                                   `=lim_(n-gtoo)ln|ln(t)|-lim_(n-gtoo)ln|ln(2)|`


                                   `= oo - ln|ln(2` )|


                                   `=oo`


`int_2^oo1/(nln(n))dn=oo` implies the series  `sum_(n=2)^oo |(-1)^n/(nln(n))|` diverges.



Conclusion:  


The series` sum_(n=2)^oo (-1)^n/(nln(n)) ` is conditionally convergent since`sum |a_n|` as   `sum_(n=2)^oo |(-1)^n/(nln(n))|` is divergent and `sum a_n` as` sum_(n=2)^oo (-1)^n/(nln(n))` is convergent.

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...