Thursday, 9 April 2015

`f(x)=2/x n=3,c=1` Find the n'th Taylor Polynomial centered at c

Taylor series is an example of infinite series derived from the expansion of f(x) about a single point. It is represented by infinite sum of` f^n(x)` centered at `x=c.` The general formula for Taylor series is:

`f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n`


or


`f(x) =f(c)+f'(c)(x-c) +(f^2(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f^4(c))/(4!)(x-c)^4 +...`


To determine the Taylor polynomial of degree `n=3 ` from the given function `f(x)=2/x ` centered at `x=1` , we may apply the definition of Taylor series.


To determine the list `f^n(x)` up to `n=3` , we may apply Law of Exponent: `1/x^n = x^-n`  and  Power rule for derivative: `d/(dx) x^n= n *x^(n-1)` .


`f(x) = 2/x or 2x^(-1)`


`f'(x) = d/(dx) 2/x`


            `= d/(dx) 2x^(-1)`


           `= 2*d/(dx) x^(-1)`


           `=2*(-1 *x^(-1-1))`


           `=-2x^(-2) or -2/x^2`


`f^2(x)= d/(dx) -2x^(-2)`


            `=-2 *d/(dx) x^(-2)`


           `=-2 *(-2x^(-2-1))`


           `=4x^(-3) or 4/x^3`


`f^3(x)= d/(dx) 4x^(-3)`


           `=4 *d/(dx) x^(-3)`


          `=4 *(-3x^(-3-1))`


          `=-12x^(-4) or -12/x^4`


Plug-in `x=1` , we get:


`f(2)=2/1 =2`


`f'(2)=-2/1^2 = -2`


`f^2(2)=4/1^3 =4`


`f^3(2)=-12/1^4 = -12`


Applying the formula for Taylor series, we get:


`sum_(n=0)^3 (f^n(1))/(n!) (x-1)^n`


`=f(1)+f'(1)(x-1) +(f^2(1))/(2!)(x-1)^2 +(f^3(1))/(3!)(x-1)^3`


`=2+(-2)(x-1) +4/(2!)(x-1)^2 +(-12)/(3!)(x-1)^3`


`=2-2(x-1) +4/2(x-1)^2 -12/6(x-1)^3`


`=2-2(x-1) +2(x-1)^2 -2(x-1)^3`


The Taylor polynomial of degree `n=3`  for the given function `f(x)=2/x` centered at `x=1` will be:


`P_3(x)=2-2(x-1) +2(x-1)^2 -2(x-1)^3`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...