`int_0^2 (y-1)(2y+1)dy`
Before evaluating, expand the integrand.
`=int_0^2 (2y^2+y-2y-1)dy`
`=int_0^2(2y^2-y-1)dy`
Then, apply the integral formulas `int x^n dx=x^(n+1)/(n+1)` and `int cdx = cx` .
`=((2y^3)/3-y^2/2-y)|_0^2`
Then, plug-in the limits of the integral to the resulting function.
`= ((2(2)^3)/3-2^2/2-2)-((2(0)^3)/3-0^2/2-0)`
`=(16/3-4/2-2)-0`
`=16/3-2-2`
`=16/3-4`
`=16/3-12/3`
`=4/3`
Therefore, `int_0^2 (y-1)(2y+1)dy = 4/3` .
`int_0^2 (y-1)(2y+1)dy`
Before evaluating, expand the integrand.
`=int_0^2 (2y^2+y-2y-1)dy`
`=int_0^2(2y^2-y-1)dy`
Then, apply the integral formulas `int x^n dx=x^(n+1)/(n+1)` and `int cdx = cx` .
`=((2y^3)/3-y^2/2-y)|_0^2`
Then, plug-in the limits of the integral to the resulting function.
`= ((2(2)^3)/3-2^2/2-2)-((2(0)^3)/3-0^2/2-0)`
`=(16/3-4/2-2)-0`
`=16/3-2-2`
`=16/3-4`
`=16/3-12/3`
`=4/3`
Therefore, `int_0^2 (y-1)(2y+1)dy = 4/3` .
No comments:
Post a Comment