Thursday, 23 April 2015

`f(x)=3/(3x+4) ,c=0` Find a power series for the function, centered at c and determine the interval of convergence.

A power series centered at `c=0` is follows the formula:

`sum_(n=0)^oo a_nx^n = a_0+a_1x+a_2x^2+a_3x^3+...`


The given function `f(x)= 3/(3x+4)` resembles the power series:


`(1+x)^k = sum_(n=0)^oo (k(k-1)(k-2)...(k-n+1))/(n!) x ^n`


or


` (1+x)^k = 1+kx +(k(k-1))/(2!)x^2+(k(k-1)(k-2))/(3!)x^3+(k(k-1)(k-2)(k-3))/(4!)x^4+...`


For better comparison, we let `3x+4 = 4 ((3x)/4 + 1)` . The function becomes:


`f(x)= 3/4 ((3x)/4 + 1)`


Apply Law of exponents: `1/x^n = x^(-n)` .


`f(x)= 3/4((3x)/4 + 1)^(-1)`



Apply the aforementioned formula for power series on  `((3x)/4 + 1)^(-1)` , we may replace "x" with "`(3x)/4` " and "`k` " with "`-1` ". We let:


 `(1+(3x)/4)^(-1) = sum_(n=0)^oo (-1(-1-1)(-1-2)...(-1-n+1))/(n!) ((3x)/4) ^n`


 `=sum_(n=0)^oo (-1(-2)(-3)...(-1-n+1))/(n!)((3x)/4) ^n`


 `=1+(-1)((3x)/4) +(-1(-2))/(2!)((3x)/4)^2+(-1(-2)(-3))/(3!)((3x)/4)^3+(-1(-2)(-3)(-4)/(4!)((3x)/4)^4+...`


`=1-(3x)/4 +(2)/2((3x)/4)^2- 6/6((3x)/4)^3+24/24((3x)/4)^4+...`


`=1-(3x)/4 +((3x)/4)^2- ((3x)/4)^3+((3x)/4)^4+...`


`=1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...`


Applying `(1+(3x)/4)^(-1) =1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...`  we get:


`3/4((3x)/4 + 1)^(-1)= 3/4*[1-(3x)/4 +(9x^2)/16- (27x^3)/64+(81x^4)/256+...]`


                      `=3/4-(9x)/16 +(27x^2)/64- (81x^3)/256+(243x^4)/1024+...`


                     `= sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n`


The power series of the function `f(x)=3/(3x+4)` centered at `c=0` is:


`3/(3x+4)=sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n`


or 


`3/(3x+4)=3/4-(9x)/16 +(279x^2)/64- (81x^3)/256+(243x^4)/1024+...`


To determine the interval of convergence, we may apply geometric series test wherein the series `sum_(n=0)^oo a*r^n`  is convergent if `|r|lt1`  or `-1 ltrlt 1` . If `|r|gt=1` then the geometric series diverges.


Applying `(3/4)^(n+1) = (3/4)^n * (3/4)` on the series `sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n` , we get:


`sum_(n=0)^oo (-1)^n(3/4)^n(3/4)x^n =sum_(n=0)^oo(3/4) (-(3x)/4)^n`


By comparing `sum_(n=0)^oo(3/4) (-(3x)/4)^n` with  `sum_(n=0)^oo a*r^n` , we determine:`r =-(3x)/4` .


Apply the condition for convergence of geometric series: `|r|lt1` .


`|-(3x)/4|lt1`


`|-1| *|(3x)/4|lt1`


`1 *|(3x)/4|lt1`


`|(3x)/4|lt1`


`-1lt(3x)/4lt1`


Multiply each sides by `4/3` :


`-1*4/3lt(3x)/4*4/3lt1*4/3`


`-4/3 ltxlt4/3`


Check the convergence at endpoints that may satisfy `|(3x)/4|=1` .


Let `x=-4/3` on `sum_(n=0)^oo(3/4) (-(3x)/4)^n` , we get:


`sum_(n=0)^oo(3/4) (-3/4*-4/3)^n=sum_(n=0)^oo(1)^n`


Using geometric series test,  the ` r =1` satisfy `|r| gt=1` . Thus, the series diverges at `x=-4/3` .


 Let `x=4/3` on `sum_(n=0)^oo(3/4) (-(3x)/4)^n` , we get:


 `sum_(n=0)^oo(3/4) (-3/4*4/3)^n=sum_(n=0)^oo(-1)^n`


 Using geometric series test,  the `r =-1` satisfy `|r| gt=1` . Thus, the series diverges at `x=-4/3` .


 Thus, the power series `sum_(n=0)^oo (-1)^n(3/4)^(n+1)x^n` has an interval of convergence: `-4/3 ltxlt4/3` .

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...