Given
`y = x^(coshx) ` , (1, 1) to find the tangent line equation.
let
`y=f(x)`
so,
`f(x) =x^(coshx)`
so let's find `f'(x) = (x^(coshx))'`
on applying the exponent rule we get,
`a^b = e^(b ln(a))`
so ,
`x^(coshx) = e^(coshx lnx)`
so,
`f'(x)= ( e^(coshx lnx))'
`=d/dx ( e^(coshx lnx))`
let `u=coshx ln x`
so ,
`d/dx ( e^(coshx lnx)) = d/ (du) e^u * d/dx (coshx lnx)`
=` e^u * d/dx (coshx lnx)`
...
Given
`y = x^(coshx) ` , (1, 1) to find the tangent line equation.
let
`y=f(x)`
so,
`f(x) =x^(coshx)`
so let's find `f'(x) = (x^(coshx))'`
on applying the exponent rule we get,
`a^b = e^(b ln(a))`
so ,
`x^(coshx) = e^(coshx lnx)`
so,
`f'(x)= ( e^(coshx lnx))'
`=d/dx ( e^(coshx lnx))`
let `u=coshx ln x`
so ,
`d/dx ( e^(coshx lnx)) = d/ (du) e^u * d/dx (coshx lnx)`
=` e^u * d/dx (coshx lnx)`
=`e^u * (sinhx lnx +coshx/x)`
=`e^(coshx ln x) * (sinhx lnx +coshx/x)`
=> `x^coshx * (sinhx lnx +coshx/x)`
now let us find f'(x) value at (1,1) which is slope
f'(1) = `x^cosh(1) (sinh(1) ln(1)+cosh(1)) = x^cosh(1) (0+cosh(1))`
= `x^cosh(1) (cosh(1))`
now , the slope of the tangent line is` x^cosh(1) (cosh(1))`
we have the solope and the points so the equation of the tangent line is
`y-y1 = slope(x-x1)`
`y-1=slope(x-1)`
`y= slope(x-1) +1`
=`x^cosh(1) (cosh(1)) (x-1)+1`
but `x^cosh(1) = e^(cosh(1)ln(1)) = e^0 =1`
so,
=`1 (cosh(1)) (x-1)+1`
=` xcoshx -coshx +1`
so ,
`y=xcoshx -coshx +1 ` is the tangent equation
No comments:
Post a Comment