Wednesday, 28 May 2014

`int x/(x^2-6x+10)^2 dx` Use integration tables to find the indefinite integral.

`intx/(x^2-6x+10)^2dx`


Let's rewrite the integrand as,


`=1/2int(2x)/(x^2-6x+10)^2dx`


`=1/2int(2x-6+6)/(x^2-6x+10)^2dx`


`=1/2[int(2x-6)/(x^2-6x+10)^2dx+int6/(x^2-6x+10)^2dx]`  --------------------(1)


Now let' evaluate each of the above two integrals separately,


`int(2x-6)/(x^2-6x+10)^2dx`


Let's apply integral substitution:`u=x^2-6x+10`


`=>du=(2x-6)dx`


`=int1/u^2du`


`=intu^(-2)du`


Now from the integer tables:`intu^ndu=u^(n+1)/(n+1)+C`


`=u^(-2+1)/(-2+1)`


`=-1/u`


Substitute back `u=x^2-6x+10`


`=-1/(x^2-6x+10)`                    -----------------------------(2)


Now let's evaluate the second integral,


`int6/(x^2-6x+10)^2dx`


Take the constant out,


`=6int1/(x^2-6x+10)^2dx`


Complete the square of the term in the denominator.


`=6int1/((x-3)^2+1)^2dx`  


Let's apply integral substitution:`u=x-3`


...

`intx/(x^2-6x+10)^2dx`


Let's rewrite the integrand as,


`=1/2int(2x)/(x^2-6x+10)^2dx`


`=1/2int(2x-6+6)/(x^2-6x+10)^2dx`


`=1/2[int(2x-6)/(x^2-6x+10)^2dx+int6/(x^2-6x+10)^2dx]`  --------------------(1)


Now let' evaluate each of the above two integrals separately,


`int(2x-6)/(x^2-6x+10)^2dx`


Let's apply integral substitution:`u=x^2-6x+10`


`=>du=(2x-6)dx`


`=int1/u^2du`


`=intu^(-2)du`


Now from the integer tables:`intu^ndu=u^(n+1)/(n+1)+C`


`=u^(-2+1)/(-2+1)`


`=-1/u`


Substitute back `u=x^2-6x+10`


`=-1/(x^2-6x+10)`                    -----------------------------(2)


Now let's evaluate the second integral,


`int6/(x^2-6x+10)^2dx`


Take the constant out,


`=6int1/(x^2-6x+10)^2dx`


Complete the square of the term in the denominator.


`=6int1/((x-3)^2+1)^2dx`  


Let's apply integral substitution:`u=x-3`


`=>du=dx`


`=6int1/(u^2+1^2)^2du`


Now use the following from the integration tables:


`int1/(a^2+-u^2)^ndu=1/(2a^2(n-1))[u/(a^2+-u^2)^(n-1)+(2n-3)int1/(a^2+-u^2)^(n-1)du]`


`=6{1/(2(1)^2(2-1))[u/(1^2+u^2)^(2-1)+(2(2)-3)int1/(1^2+u^2)^(2-1)du]}`


`=6{1/2[u/(1+u^2)+int1/(1^2+u^2)du]}`


Now from the integration table:`int1/(a^2+u^2)du=1/aarctan(u/a)+C`


`=6{1/2[u/(1+u^2)+arctan(u/1)]}`


`=(3u)/(1+u^2)+3arctan(u)`


Substitute back `u=x-3`


`=(3(x-3))/(1+(x-3)^2)+3arctan(x-3)`


`=(3x-9)/(1+x^2-6x+9)+3arctan(x-3)`


`=(3x-9)/(x^2-6x+10)+3arctan(x-3)`    -------------------------(3)


Plug back the results of the integrals 2 and 3 in 1


`int1/(x^2-6x+10)^2dx=1/2[-1/(x^2-6x+10)+(3x-9)/(x^2-6x+10)+3arctan(x-3)]`


`=1/2[(3x-9-1)/(x^2-6x+10)+3arctan(x-3)]`


`=1/2[(3x-10)/(x^2-6x+10)+3arctan(x-3)]`


`=(3x-10)/(2(x^2-6x+10))+3/2arctan(x-3)`


Add a constant C to the solution,


`=(3x-10)/(2(x^2-6x+10))+3/2arctan(x-3)+C`


No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...