You need to evaluate the definite integral using the fundamental theorem of calculus such that `int_a^b f(x)dx = F(b) - F(a)`
`int_(pi/6)^pi sin theta d theta = -cos theta|_(pi/6)^pi`
`int_(pi/6)^pi sin theta d theta = -cos pi + cos (pi/6)`
`int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2`
Hence, evaluating the definite integral yields
` int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2.`
You need to evaluate the definite integral using the fundamental theorem of calculus such that `int_a^b f(x)dx = F(b) - F(a)`
`int_(pi/6)^pi sin theta d theta = -cos theta|_(pi/6)^pi`
`int_(pi/6)^pi sin theta d theta = -cos pi + cos (pi/6)`
`int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2`
Hence, evaluating the definite integral yields
` int_(pi/6)^pi sin theta d theta = 1 + sqrt3/2.`
No comments:
Post a Comment