For the given integral problem: `int (x^3+3x-4)/(x^3-4x^2+4x)dx` , we may simplify by applying long division since the highest degree of x is the same from numerator and denominator side.
`(x^3+3x-4)/(x^3-4x^2+4x) = 1+(4x^2-x-4)/(x^3-4x^2+4x)` .
Apply partial fraction decomposition on the expression `(4x^2-x-4)/(x^3-4x^2+4x)` .
The pattern on setting up partial fractions will depend on the factors of the denominator. For the given problem, the factored form of the denominator will be:
`(x^3-4x^2+4x) =(x)(x^2-4x+4)`
`=(x) (x-2)(x-2)` or `x(x-2)^2`
For the linear factor `(x)` , we will have partial fraction: `A/x`
For the repeated linear factor `(x-2)^2` , we will have partial fractions: `B/(x-2) + C/(x-2)^2` .
The rational expression becomes:
`(4x^2-x-4)/(x^3-4x^2+4x) =A/x +B/(x-2) + C/(x-2)^2`
Multiply both side by the `LCD =x(x-2)^2` :
`((4x^2-x-4)/(x^3-4x^2+4x)) (x(x-2)^2)=(A/x +B/(x-2) + C/(x-2)^2)(x(x-2)^2)`
`4x^2-x-4=A*(x-2)^2+B*(x(x-2)) + C*x`
We apply zero-factor property on x(x-2)^2 to solve for value we can assign on x.
`x=0`
`x-2 = 0` then `x=2` .
To solve for `A` , we plug-in `x=0` :
`4*0^2-0-4=A*(0-2)^2+B*(0(0-2)) + C*0`
`0-0-4 = A*(-2)^2 +0 +0`
`-4 =4A`
`-4/4 =(4A)/4`
`A =-1`
To solve for `C` , we plug-in `x=2` :
`4*2^2-2-4=A*(2-2)^2+B*(2(2-2)) + C*2`
`16-2-4 = A*0 +B*0 +2C`
`10= 0 + 0 +2C`
`10 =2C`
`(10)/2= (2C)/2`
`C=5`
To solve for B, plug-in `x=1` ,`A=-1` , and `C=5` :
`4*1^2-1-4=(-1)*(1-2)^2+B*(1(1-2)) + 5*1 `
`4-1-4= (-1)*(-1)^2+B(1*(-1)) +5`
`-1= -1-B +5`
`-1= -B+4`
`-1-4= -B`
`-5=-B`
`(-5)/(-1) = (-B)/(-1)`
`B =5`
Plug-in `A = -1` , `B =5,` and `C=5` , we get the partial decomposition:
`(4x^2-x-4)/(x^3-4x^2+4x) =-1/x +5/(x-2) + 5/(x-2)^2`
Then the integrand becomes:
`(x^3+3x-4)/(x^3-4x^2+4x) = 1+(4x^2-x-4)/(x^3-4x^2+4x)` .
` =1-1/x +5/(x-2) + 5/(x-2)^2`
Apply the basic integration property:`int (u+-v) dx = int (u) dx +- int (v) dx` .
`int (x^3+3x-4)/(x^3-4x^2+4x) dx = int [1-1/x +5/(x-2) + 5/(x-2)^2] dx`
`=int1 dx - int 1/x dx +int 5/(x-2)dx + int 5/(x-2)^2dx`
Apply basic integration property: ` int(a) dx = ax+C`
`int1 dx = 1x` or `x`
Apply integration formula for logarithm: `int 1/u du = ln|u|+C` .
`int 1/x dx=ln|x|`
`int 5/(x-2)dx= int 5/udu`
`= 5ln|u|`
`=5 ln|x-2|`
Note: Let `u =x-2` then `du = dx` .
Apply the Power Rule for integration: `int (u^n) dx =u^(n+1)/ (n+1) +C` .
`int 5/(x-2)^2dx=int 5/u^2du`
`=int 5u^(-2)du`
`= 5 * u^(-2+1)/(-2+1)`
`= 5* u^-1/(-1)`
`= -5/u`
`= -5/(x-2)`
Note: Let `u =x-2` then `du = dx`
Combining the results, we get the indefinite integral as:
`int (x^3+3x-4)/(x^3-4x^2+4x)dx =x-ln|x| +5 ln|x-2|-5/(x-2)+C`
No comments:
Post a Comment