`sum_(n=0)^oo(n+10)/(10n+1)`
For the series `a_n=(n+10)/(10n+1)`
`a_n=(1+10/n)/(10+1/n)`
`lim_(n->oo)a_n=lim_(n->oo)(1+10/n)/(10+1/n)`
`=1/10!=0`
As per the n'th term test for divergence,
If `lim_(n->oo)a_n!=0` , then `sum_(n=1)^ooa_n` diverges
So, the series diverges.
`sum_(n=0)^oo(n+10)/(10n+1)`
For the series `a_n=(n+10)/(10n+1)`
`a_n=(1+10/n)/(10+1/n)`
`lim_(n->oo)a_n=lim_(n->oo)(1+10/n)/(10+1/n)`
`=1/10!=0`
As per the n'th term test for divergence,
If `lim_(n->oo)a_n!=0` , then `sum_(n=1)^ooa_n` diverges
So, the series diverges.
No comments:
Post a Comment