Tuesday, 4 November 2014

`f(x)=e^(-4x) ,c=0` Use the definition of Taylor series to find the Taylor series, centered at c for the function.

Taylor series is an example of infinite series derived from the expansion of `f(x)` about a single point. It is represented by infinite sum of `f^n(x)` centered at `x=c` . The general formula for Taylor series is:

`f(x) = sum_(n=0)^oo (f^n(c))/(n!) (x-c)^n`


or


`f(x) =f(c)+f'(c)(x-c) +(f^2(c))/(2!)(x-c)^2 +(f^3(c))/(3!)(x-c)^3 +(f^4(c))/(4!)(x-c)^4 +...`


To apply the definition of Taylor series for the given function `f(x) = e^(-4x)` centered at `x=0` , we list `f^n(x)` using the derivative formula for exponential function: `d/(dx) e^u = e^u * (du)/(dx)` .


Let `u =-4x` then `(du)/(dx)= -4` .


Applying the values on the derivative formula for exponential function, we get:


`d/(dx) e^(-4x) = e^(-4x) *(-4)`


                 `= -4e^(-4x)`


Applying `d/(dx) e^(-4x)= -4e^(-4x)` and `d/(dx) c*f(x) = c d/(dx) f(x)`   for each` f^n(x)` , we get:


`f'(x) = d/(dx) e^(-4x)`


           `= -4e^(-4x)`


`f^2(x) = -4 *d/(dx) e^(-4x)`


            `= -4*(-4e^(-4x))`


            `=16e^(-4x)`


`f^3(x) = 16*d/(dx) e^(-4x)`


            `= 16*(-4e^(-4x))`


            `=-64e^(-4x)`


`f^4(x) =- 64*d/(dx) e^(-4x)`


            `= -64*(-4e^(-4x))`


            `=256e^(-4x)`


Plug-in `x=0` , we get:


`f(0) =e^(-4*0) =1`


`f'(0) =-4e^(-4*0)=-4`


`f^2(0) =16e^(-4*0)=16`


`f^3(0) =-64e^(-4*0)=-64`


`f^4(0) =2564e^(-4*0)=256`


Note: e`^(-4*0)=e^0 =1` .


Plug-in the values on the formula for Taylor series, we get:


`e^(-4x) =sum_(n=0)^oo (f^n(0))/(n!) (x-0)^n`


          `=sum_(n=0)^oo (f^n(0))/(n!) x^n`


          `= 1+(-4)/(1!)x+16/(2!)x^2+(-64)/(3!)x^3+256/(4!)x^4+...`


          `=1- 4/1x +16/(1*2)x^2 - 64/(1*2*3)x^3 +256/(1*2*3*4)x^4 +...`


         `=1- 4x + 16/2x^2 - 64/6x^3 +256/24x^4 +...`


         `= 1-4x+ 8x^2 - 32/3x^3 + 32/3x^4+...`


The Taylor series for the given function `f(x)=e^(-4x)` centered at `c=0` will be:


`e^(-4x) =1-4x+ 8x^2 - 32/3x^3 + 32/3x^4+...`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...