Sunday, 2 November 2014

`y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)` Determine whether the function is a solution of the differential equation `y^((4)) - 16y = 0`

Given,


`y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)`


let us find


`y'=(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))'`


`= 2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x)`


`y''=(2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x))'`


`=4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x)`


`y'''=(4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x))'`


`=8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x)`


`y''''=(8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x))'`


...

Given,


`y = C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x)`


let us find


`y'=(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))'`


`= 2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x)`


`y''=(2 C_1e^2x +(-2) C_2e^(-2x) +2 C_3cos(2x) -2 C_4 sin(2x))'`


`=4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x)`


`y'''=(4 C_1e^2x +(4) C_2e^(-2x) -4 C_3sin(2x) -4 C_4 cos(2x))'`


`=8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x)`


`y''''=(8 C_1e^2x +(-8) C_2e^(-2x) -8 C_3cos(2x) +8 C_4 sin(2x))'`


`=(16 C_1e^2x +(-8)(-2) C_2e^(-2x) -8(-2) C_3sin(2x) +8(2) C_4 cos(2x))`


`=(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))`


So lets check whether `y'''' -16 y =0` or not


`(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-16(C_1e^2x + C_2e^(-2x) + C_3sin(2x) + C_4cos(2x))`


=`(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))-(16C_1e^2x +16 C_2e^(-2x) +16 C_3sin(2x) + 16C_4cos(2x))`


`=0`


so,


`y'''' -16 y =0`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...