Given the equation of a line `y = mx + b,`
=> slope = `dy/dx = m` . Thus, the distance is:
`L = int_a^b sqrt(1+(dy/dx)^2) dx` where `a<=x<=b`
we know the two points `(x_1,y_1)=(1,2)`
`(x_2,y_2)=(7,10)`
`m = (y_2- y_1)/(x_2-x_1) = (10-2)/(7-1) = 8/6=4/3`
so now the length is` L = int_1^7 sqrt(1+(4/3)^2) dx`
=` int_1^7 sqrt(1+(16/9)) dx`
=` int_1^7 sqrt(25/9) dx`
= `int_1^7 (5/3) dx`
= `(5/3) int_1^7 1 dx`
= `(5/3) |_1^7 x`
...
Given the equation of a line `y = mx + b,`
=> slope = `dy/dx = m` . Thus, the distance is:
`L = int_a^b sqrt(1+(dy/dx)^2) dx` where `a<=x<=b`
we know the two points `(x_1,y_1)=(1,2)`
`(x_2,y_2)=(7,10)`
`m = (y_2- y_1)/(x_2-x_1) = (10-2)/(7-1) = 8/6=4/3`
so now the length is` L = int_1^7 sqrt(1+(4/3)^2) dx`
=` int_1^7 sqrt(1+(16/9)) dx`
=` int_1^7 sqrt(25/9) dx`
= `int_1^7 (5/3) dx`
= `(5/3) int_1^7 1 dx`
= `(5/3) |_1^7 x`
=` (5/3)[7-1]`
=` (5/3)6 = 5*2 = 10`
so the distance between the two points = 10
No comments:
Post a Comment