Tuesday, 8 October 2013

`int sqrt(5x^2-1)dx` Find the indefinite integral

Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`


 where:` f(x)` as the integrand


           `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


For the given problem` int sqrt(5x^2-1) dx` , it resembles one of the formula from integration table.  We may apply the integral formula for function with roots as:


`int sqrt(u^2+-a^2)du=1/2usqrt(u^2+-a^2)+-1/2a^2ln|u+sqrt(u^2+-a^2)| +C` .


Take...

Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`


 where:` f(x)` as the integrand


           `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


For the given problem` int sqrt(5x^2-1) dx` , it resembles one of the formula from integration table.  We may apply the integral formula for function with roots as:


`int sqrt(u^2+-a^2)du=1/2usqrt(u^2+-a^2)+-1/2a^2ln|u+sqrt(u^2+-a^2)| +C` .


Take note the sign inside the root is "`(-)` " then we follow the formula as:


`int sqrt(u^2-a^2)du=1/2usqrt(u^2-a^2)-1/2a^2ln|u+sqrt(u^2-a^2)| +C`


By comparing "`u^2-a^2` " with "`5x^2-1` " , we determine the corresponding values as:


`u^2=5x^2` or `(sqrt(5)x)^2` then `u =sqrt(5)x`


`a^2 =1` or `1^2` then `a=1`


For the derivative of `u` , we get `du = sqrt(5) dx` or `(du)/sqrt(5) =dx` .


Plug-in on the values `u^2=5x^2` and `(du)/sqrt(5) =dx` on the integral problem, we get: 


`int sqrt(5x^2-1) dx=int sqrt(u^2-1) *(du)/sqrt(5)`


Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .


`int sqrt(u^2-1) *(du)/sqrt(5) =1/sqrt(5)int sqrt(u^2-1) du`


Apply aforementioned integral formula for function with roots where `a^2 =1` , we get:


`1/sqrt(5)int sqrt(u^2-1) du=1/sqrt(5)*[1/2usqrt(u^2-1)-1/2*1*ln|u+sqrt(u^2-1)|] +C`


                           `=1/sqrt(5)*[1/2usqrt(u^2-1)-1/2ln|u+sqrt(u^2-1)|] +C`


                           `=1/(2sqrt(5))usqrt(u^2-1)-1/(2sqrt(5))ln|u+sqrt(u^2-1)|]+C`


                           `=(usqrt(u^2-1))/(2sqrt(5))- (ln|u+sqrt(u^2-1)|)/(2sqrt(5)) +C`


Plug-in `u^2=5x^2` and `u =sqrt(5)x` on  `(usqrt(u^2-1))/(2sqrt(5))- (ln|u+sqrt(u^2-1)|)/(2sqrt(5)) +C` , we get the indefinite integral as:


`int sqrt(5x^2-1) dx = (sqrt(5)xsqrt(5x^2-1))/(2sqrt(5))- (ln|sqrt(5)x+sqrt(5x^2-1)|)/(2sqrt(5)) +C`


                          `= (xsqrt(5x^2-1))/2- (ln|sqrt(5)x+sqrt(5x^2-1)|)/(2sqrt(5)) +C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...