Given to solve,
`int sqrt(9+16x^2) dx`
by using the trig substitution , we can solve the integral
for `sqrt(a +bx^2)` ` dx ` the `x` is given as
`x= sqrt(a/b) tan(u)`
so,
for the integral
`int sqrt(9+16x^2) dx`
let` x=sqrt(9/16) tan(u) = (3/4) tan(u)`
=>` dx = (3/4) sec^2(u) du`
so,
`int sqrt(9+16x^2) dx`
=`int [sqrt(9(1+16/9 x^2))] ((3/4) sec^2(u) du)`
= `3 int [sqrt(1+(16/9)x^2)] ((3/4) sec^2(u) du)`
= `3 int sqrt(1+(16/9)((3/4) tan(u))^2) ((3/4) sec^2(u) du)`
...
Given to solve,
`int sqrt(9+16x^2) dx`
by using the trig substitution , we can solve the integral
for `sqrt(a +bx^2)` ` dx ` the `x` is given as
`x= sqrt(a/b) tan(u)`
so,
for the integral
`int sqrt(9+16x^2) dx`
let` x=sqrt(9/16) tan(u) = (3/4) tan(u)`
=>` dx = (3/4) sec^2(u) du`
so,
`int sqrt(9+16x^2) dx`
=`int [sqrt(9(1+16/9 x^2))] ((3/4) sec^2(u) du)`
= `3 int [sqrt(1+(16/9)x^2)] ((3/4) sec^2(u) du)`
= `3 int sqrt(1+(16/9)((3/4) tan(u))^2) ((3/4) sec^2(u) du)`
= `3 int [sqrt(1+(16/9)(9/16)(tan^2 u))] ((3/4) sec^2(u) du)`
= `(9/4) int sqrt(1+tan^2 u) (sec^2(u) du)`
= `(9/4) int sqrt(sec^2 u) (sec^2(u) du)`
`= (9/4) int sec u (sec^2(u) du)`
`= (9/4) int (sec^3(u) du)`
by applying the Integral Reduction
`int sec^(n) (x) dx`
`= (sec^(n-1) (x) sin(x))/(n-1) + ((n-2)/(n-1)) int sec^(n-2) (x) dx`
so ,
`(9/4)int sec^(3) (u) du`
= `(9/4)[(sec^(3-1) (u) sin(u))/(3-1) + ((3-2)/(3-1)) int sec^(3-2) (u)du]`
= `(9/4)[(sec^(2) (u) sin(u))/(2) + ((1)/(2)) int sec (u)du]`
=`(9/4)[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]`
but we know
`x= (3/4) tan(u)`
= > `4x/3 = tan(u)`
=> `u =arctan(4x/3)`
so,
=`(9/4)[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]`
=`(9/4)[(sec^(2) (arctan(4x/3)) sin(arctan(4x/3)))/(2) + (1/2) (ln(tan(arctan(4x/3))+sec(arctan(4x/3))))]`
=`(9/4)[(sec^(2) (arctan(4x/3)) sin(arctan(4x/3)))/(2) + (1/2) (ln((4x/3))+sec(arctan(4x/3)))]+c`
No comments:
Post a Comment