Given ,
`y' - y = e^xroot3(x)` ----------(1)
this equation is already in linear form of first order ,so
this is of the form
`y' +Py=Q` ------------(2)
then the general solution `y=((int (I.F) (Q) dx)+c)/(I.F)`
where I.F is the integration function =` e^(int p dx)`
so on comapring the equations (1) and (2) we get,
`P =-1 , Q= e^xroot3(x)`
so the `I.F = e^(int p dx) = e^(int -1 dx)= e^(-x)`
now...
Given ,
`y' - y = e^xroot3(x)` ----------(1)
this equation is already in linear form of first order ,so
this is of the form
`y' +Py=Q` ------------(2)
then the general solution `y=((int (I.F) (Q) dx)+c)/(I.F)`
where I.F is the integration function =` e^(int p dx)`
so on comapring the equations (1) and (2) we get,
`P =-1 , Q= e^xroot3(x)`
so the `I.F = e^(int p dx) = e^(int -1 dx)= e^(-x)`
now the general solution is
`y=((int (I.F) *Q dx )+c)/(I.F)`
=>`y= ((int (e^(-x)) (e^xroot3(x)) dx)+c)/(e^(-x))`
`= (int root3(x) dx + c)/e^(-x) `
`= ((x^(4/3))/(4/3) +c)/(e^(-x))`
`=((x^(4/3))/(4/3) +c)*e^(x)`
is the general solution.
No comments:
Post a Comment