Given the differential equation : `dT+K(T-70)dt=0, T(0)=140`
We have to find a particular solution that satisfies the initial condition.
We can write,
`dT=-K(T-70)dt`
`\frac{dT}{T-70}=-Kdt`
`\int \frac{dT}{T-70}=\int -Kdt`
`ln(T-70)=-Kt+C` where C is a constant.
Now,
`T-70=e^{-Kt+C}`
`=e^{-Kt}.e^{C}`
`=C'e^{-Kt}` where `e^C=C'` is again a constant.
Hence we have,
`T=70+C'e^{-Kt}`
Applying the initial condition we get,
`140=70+C' ` implies `C'=70`
Therefore we have the solution:
`T=70(1+e^{-Kt})`
Given the differential equation : `dT+K(T-70)dt=0, T(0)=140`
We have to find a particular solution that satisfies the initial condition.
We can write,
`dT=-K(T-70)dt`
`\frac{dT}{T-70}=-Kdt`
`\int \frac{dT}{T-70}=\int -Kdt`
`ln(T-70)=-Kt+C` where C is a constant.
Now,
`T-70=e^{-Kt+C}`
`=e^{-Kt}.e^{C}`
`=C'e^{-Kt}` where `e^C=C'` is again a constant.
Hence we have,
`T=70+C'e^{-Kt}`
Applying the initial condition we get,
`140=70+C' ` implies `C'=70`
Therefore we have the solution:
`T=70(1+e^{-Kt})`
No comments:
Post a Comment