Saturday, 29 August 2015

`int_0^pi (5e^x + 3sin(x))dx` Evaluate the integral


You need to evaluate the definite integral using the fundamental theorem of calculus, such that: `int_a^b f(x)dx = F(b) - F(a)`


`int_0^pi (5e^x+ 3sin x)dx = int_0^pi 5e^x dx + int_0^pi 3sin x dx`


`int_0^pi (5e^x+ 3sin x)dx = (5e^x - 3cos x)|_0^pi`


`int_0^pi (5e^x+ 3sin x)dx =5e^pi - 3cos pi - 5e^0 + 3cos 0`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi - 3*(-1) - 5 + 3`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi + 1`


Hence,...


You need to evaluate the definite integral using the fundamental theorem of calculus, such that: `int_a^b f(x)dx = F(b) - F(a)`


`int_0^pi (5e^x+ 3sin x)dx = int_0^pi 5e^x dx + int_0^pi 3sin x dx`


`int_0^pi (5e^x+ 3sin x)dx = (5e^x - 3cos x)|_0^pi`


`int_0^pi (5e^x+ 3sin x)dx =5e^pi - 3cos pi - 5e^0 + 3cos 0`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi - 3*(-1) - 5 + 3`


`int_0^pi (5e^x+ 3sin x)dx = 5e^pi + 1`


Hence, evaluating the definite integral yields


` int_0^pi (5e^x+ 3sin x)dx = 5e^pi + 1`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...