Sunday, 23 August 2015

`int sin^4(6theta) d theta` Find the indefinite integral

Indefinite integrals are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand


          `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


To evaluate the given problem `int sin^4(6theta) d theta` , we may apply u-substitution by letting: `u = 6theta` then `du = 6 d theta` or `(du)/6 = d theta` .


The integral becomes:


`int sin^4(6theta) d theta=int sin^4(u) * (du)/6`


 Apply the basic properties of integration: `int c*f(x) dx= c int f(x) dx` .


`int sin^4(u) * (du)/6=1/6int sin^4(u)du` .


Apply the integration formula for sine function: `int sin^n(x) dx = -(cos(x)sin^(n-1)(x))/n+(n-1)/n int sin^(n-2)(x)dx` .


`1/6int sin^4(u)du=1/6[-(cos(u)sin^(4-1)(u))/4+(4-1)/4 int sin^(4-2)(u)du]` .


                    `=1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]`


For the integral `int sin^(2)(u)du` , we may apply trigonometric identity: `sin^2(x)= 1-cos(2x)/2 or 1/2 - cos(2x)/2.`


We get:


`int sin^(2)(u)du = int ( 1/2 - cos(2u)/2) du` .


Apply the basic integration property:`int (u-v) dx = int (u) dx - int (v) dx` .


`int ( 1/2 - cos(2u)/2) du=int ( 1/2) du - int cos(2u)/2 du`


                                   `= 1/2u - 1/4sin(2u)+C`


                                  or `u/2 - sin(2u)/4+C`


Note: From the table of integrals, we have `int cos(theta) d theta = sin(theta)+C.`


Let: `v = 2u` then `dv = 2du ` or` (dv)/2= du`


then`int cos(2x)/2 du =int cos(v)/2 * (dv)/2`


                             `= 1/4 sin(v)`


                             `= 1/4 sin(2u)`


Applying `int sin^(2)(u)du=u/2 - sin(2u)/4+C` , we get:


`1/6int sin^4(u)du=1/6[-(cos(u)sin^(3)(u))/4+3/4 int sin^(2)(u)du]`


                           `=1/6[-(cos(u)sin^(3)(u))/4+3/4 [u/2 - sin(2u)/4]]+C`


                           `=1/6[-(cos(u)sin^(3)(u))/4+(3u)/8 - (3sin(2u))/16]+C`


                           `=(-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C`


Plug-in `u =6theta ` on `(-cos(u)sin^(3)(u))/24+(3u)/48 - (3sin(2u))/96+C`  to find the  indefinite integral as:


`int sin^4(6theta) d theta =(cos(6theta)sin^(3)(6theta))/24+(3*6theta)/48 - (3sin(2*6theta))/96+C`


                         `=(cos(6theta)sin^(3)(6theta))/24+(18theta)/48 - (3sin(12theta))/96+C`


                        `=(cos(6theta)sin^(3)(6theta))/24+(3theta)/8 - (sin(12theta))/32+C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...