Sunday, 30 August 2015

`int (x^3+x+1)/(x^4+2x^2+1) dx` Find the indefinite integral

Indefinite integral are written in the form of `int f(x) dx = F(x) +C`

 where: `f(x)` as the integrand


          `F(x)` as the anti-derivative function of `f(x)`


          `C `  as the arbitrary constant known as constant of integration



To determine the indefinite integral of `int (x^3+x+1)/(x^4+2x^2+1) dx` , we apply partial fraction decomposition to expand the integrand: `f(x)=(x^3+x+1)/(x^4+2x^2+1)` .


The pattern on setting up partial fractions will depend on the factors  of the denominator. For the given problem,  the denominator is in a similar form of perfect squares trinomial:  `x^2+2xy+y^2= (x+y)^2`


Applying the special factoring on `(x^4+2x^2+1)` , we get: `(x^4+2x+1)= (x^2+1)^2` .


For the repeated quadratic factor `(x^2+1)^2` , we will have partial fraction: `(Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2` .


The integrand becomes:


`(x^3+x+1)/(x^4+2x^2+1)=(Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2`


Multiply both sides by the `LCD =(x^2+1)^2` :


`((x^3+x+1)/(x^4+2x^2+1)) *(x^2+1)^2=((Ax+B)/(x^2+1) +(Cx+D)/(x^2+1)^2)*(x^2+1)^2`


`x^3+x+1=(Ax+B)(x^2+1) +Cx+D`


`x^3+x+1=Ax^3 +Ax+Bx^2+B+Cx+D`


`x^3+0x^2 + x+1=Ax^3 +Ax+Bx^2+B+Cx+D`


Equate the coefficients of similar terms on both sides to list a system of equations:


Terms with `x^3` :  `1 = A`


Terms with `x^2` :  `0=B`


Terms with `x` :  `1 = A+C`


Plug-in `A =1` on `1 =A+C` , we get: 


`1 =1+C`


`C =1-1`


`C =0`


Constant terms: `1=B+D`


Plug-in `B =0` on `1 =B+D` , we get: 


`1 =0+D`


`D =1`


Plug-in the values of `A =1` , `B=0` , `C=0` , and `D=1` , we get the partial fraction decomposition:


`(x^3+x+1)/(x^4+2x^2+1)=(1x+0)/(x^2+1) +(0x+1)/(x^2+1)^2`


                      `=x/(x^2+1) +1/(x^2+1)^2`


Then the integral becomes:


`int (x^3+x+1)/(x^4+2x^2+1) dx = int [x/(x^2+1) +1/(x^2+1)^2] dx`


Apply the basic integration property: `int (u+v) dx = int (u) dx +int (v) dx.`


`int [x/(x^2+1) +1/(x^2+1)^2] dx=int x/(x^2+1)dx +int 1/(x^2+1)^2 dx`


For the first integral, we apply integration formula for rational function as:


`int u /(u^2+a^2) du = 1/2ln|u^2+a^2|+C`


Then, `int x/(x^2+1)dx=1/2ln|x^2+1|+C or (ln|x^2+1|)/2+C`


For the second integral,  we apply integration by trigonometric substitution.


We let `x = tan(u) `  then  `dx= sec^2(u) du`


Plug-in  the values, we get:


`int 1/(x^2+1)^2 dx = int 1 /(tan^2(u)+1)^2 * sec^2(u) du`


Apply the trigonometric identity: `tan^2(u) +1 = sec^2(u)` and trigonometric property:` 1/(sec^2(u)) =cos^2(u)`


 `int 1 /(tan^2(u)+1)^2 * sec^(u) du =int 1 /(sec^2(u))^2 * sec^2(u) du`


                                        `= int 1 /(sec^4(u)) * sec^2(u) du`


                                       `=int 1/(sec^2(u)) du`


                                       `= int cos^2(u) du`


Apply the integration formula for cosine function: `int cos(x) dx = 1/2[x+sin(x)cos(x)]+C`


`int cos^2(u) du= 1/2[u+sin(u)cos(u)]+C`


Based from `x= tan(u)` then :


`u =arctan(x)`


`sin(u) = x/sqrt(x^2+1)`


`cos(u) =1/sqrt(x^2+1)`


Then the integral becomes:


`int 1/(x^2+1)^2dx`


`= 1/2[arctan(x) + (x/sqrt(x^2+1))*(1/sqrt(x^2+1))] `             


`=arctan(x)/2+x/(2x^2+2)`


Combining the results, we get: 


`int (x^3+x+1)/(x^4+2x^2+1) dx =(ln|x^2+1|)/2+arctan(x)/2+x/(2x^2+2)+C` 

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...