The derivative of y in terms of x is denoted by `d/(dx)y` or `y'` .
For the given problem: `y =1/2[xsqrt(4-x^2)+4arcsin(x/2)]` , we apply the basic derivative property:
`d/(dx) c*f(x) = c d/(dx) f(x)` .
Then,
`d/(dx)y =d/(dx) 1/2[xsqrt(4-x^2)+4arcsin(x/2)]`
`y’ =1/2 d/(dx) [xsqrt(4-x^2)+4arcsin(x/2)]`
Apply the basic differentiation property: `d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)`
`y’ =1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`
For the derivative of `d/(dx) (xsqrt(4-x^2))` , we apply the Product Rule: `d/(dx)(u*v) = u’*v =+u*v’` .
`d/(dx) (xsqrt(4-x^2))= d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`
Let `u=x` then `u'= 1`
`v= sqrt(4-x^2) ` then `v' =-x/ sqrt(4-x^2)`
Note: `d/(dx) sqrt(4-x^2) = d/(dx)(4-x^2)^(1/2)`
Applying the chain rule of derivative:
`d/(dx)(4-x^2)^(1/2)= 1/2(4-x^2)^(-1/2)*(-2x)`
` =-x(4-x^2)^(-1/2)`
`=-x/(4-x^2)^(1/2)` or - `–x/sqrt(4-x^2)`
Following the Product Rule, we set-up the derivative as:
`d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`
`= 1 * sqrt(4-x^2)+ x*(-x/sqrt(4-x^2))`
`= sqrt(4-x^2)-x^2/sqrt(4-x^2)`
Express as one fraction:
`sqrt(4-x^2)* sqrt(4-x^2)/ sqrt(4-x^2)-x^2/sqrt(4-x^2)`
`=( sqrt(4-x^2))^2/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`
`=( 4-x^2)/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`
`=( 4-x^2-x^2)/ sqrt(4-x^2)`
`=( 4-2x^2)/ sqrt(4-x^2)`
Then, `d/(dx) (xsqrt(4-x^2))= ( 4-2x^2)/ sqrt(4-x^2)`
For the derivative of `d/(dx) (4arcsin(x/2))` , we apply the basic derivative property: `d/(dx) c*f(x) = c d/(dx) f(x)` .
`d/(dx) (4arcsin(x/2))= 4 d/(dx) (arcsin(x/2))`
Apply the basic derivative formula for inverse sine function: `d/(dx) (arcsin(u))= (du)/sqrt(1-u^2)` .
Let `u =x/2` then `du=1/2`
`4d/(dx) (4arcsin(x/2))]= 4*(1/2)/sqrt(1-(x/2)^2)`
`= 2/sqrt(1-(x^2/4))`
` =2/sqrt(1*4/4-(x^2/4))`
` = 2/sqrt((4-x^2)/4)`
` = 2/ (sqrt(4-x^2)/sqrt(4))`
`=2/ (sqrt(4-x^2)/2)`
`=2*2/sqrt(4-x^2)`
`=4/sqrt(4-x^2)`
Combining the results, we get:
`y' = 1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`
`=1/2[( 4-2x^2)/ sqrt(4-x^2)+4/sqrt(4-x^2)]`
`=1/2[( 4-2x^2+4)/ sqrt(4-x^2)]`
` =1/2[( -2x^2+8)/ sqrt(4-x^2)]`
` =1/2[( 2(-x^2+4))/ sqrt(4-x^2)]`
` =(-x^2+4)/ sqrt(4-x^2)]`
or `y'=(4-x^2)/ sqrt(4-x^2)]`
Applying Law of Exponents: ` x^n/x^m= x^n-m` :
`y' =(4-x^2)/ sqrt(4-x^2)`
` =(4-x^2)^1/ (4-x^2)^(1/2)`
` =(4-x^2)^(1-1/2)`
`=(4-x^2)^(1/2)`
Final answer:
`y'=(4-x^2)^(1/2)`
or
`y'=sqrt(4-x^2)`