`int(x^2-1)/(x^3+x)dx`
`(x^2-1)/(x^3+x)=(x^2-1)/(x(x^2+1))`
Now let's create partial fraction template,
`(x^2-1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)`
Multiply equation by the denominator,
`(x^2-1)=A(x^2+1)+(Bx+C)x`
`(x^2-1)=Ax^2+A+Bx^2+Cx`
`x^2-1=(A+B)x^2+Cx+A`
Comparing the coefficients of the like terms,
`A+B=1` ----------------(1)
`C=0`
`A=-1`
Plug the value of A in equation 1,
`-1+B=1`
`B=2`
Plug in the values of A,B and C in the partial fraction template,
`(x^2-1)/(x(x^2+1))=-1/x+(2x)/(x^2+1)`
`int(x^2-1)/(x^3+x)dx=int(-1/x+(2x)/(x^2+1))dx`
Apply the sum rule,
`=int-1/xdx+int(2x)/(x^2+1)dx`
Take the constant out,
`=-1int1/xdx+2intx/(x^2+1)dx`
Now evaluate both the integrals separately,
`int1/xdx=ln|x|`
Now let's evaluate second integral,
...
`int(x^2-1)/(x^3+x)dx`
`(x^2-1)/(x^3+x)=(x^2-1)/(x(x^2+1))`
Now let's create partial fraction template,
`(x^2-1)/(x(x^2+1))=A/x+(Bx+C)/(x^2+1)`
Multiply equation by the denominator,
`(x^2-1)=A(x^2+1)+(Bx+C)x`
`(x^2-1)=Ax^2+A+Bx^2+Cx`
`x^2-1=(A+B)x^2+Cx+A`
Comparing the coefficients of the like terms,
`A+B=1` ----------------(1)
`C=0`
`A=-1`
Plug the value of A in equation 1,
`-1+B=1`
`B=2`
Plug in the values of A,B and C in the partial fraction template,
`(x^2-1)/(x(x^2+1))=-1/x+(2x)/(x^2+1)`
`int(x^2-1)/(x^3+x)dx=int(-1/x+(2x)/(x^2+1))dx`
Apply the sum rule,
`=int-1/xdx+int(2x)/(x^2+1)dx`
Take the constant out,
`=-1int1/xdx+2intx/(x^2+1)dx`
Now evaluate both the integrals separately,
`int1/xdx=ln|x|`
Now let's evaluate second integral,
`intx/(x^2+1)dx`
Apply integral substitution: `u=x^2+1`
`du=2xdx`
`=int1/u(du)/2`
`=1/2int1/udu`
`=1/2ln|u|`
Substitute back `u=x^2+1`
`=1/2ln|x^2+1|`
`int(x^2-1)/(x^3+x)dx=-ln|x|+2(1/2ln|x^2+1|)`
Simplify and add a constant C to the solution,
`=-ln|x|+ln|x^2+1|+C`
No comments:
Post a Comment