Tuesday 29 September 2015

`sum_(n=1)^oo ln((n+1)/n)` Determine the convergence or divergence of the series.

To determine if the series `sum_(n=1)^oo ln((n+1)/n)` converges or diverges, we may apply the Direct Comparison Test.


Direct Comparison test is applicable when `sum a_n` and `sum b_n` are both positive series for all n where `a_n lt=b_n` .


If `sum b_n` converges then`sum a_n` converges.


If `sum a_n` diverges so does the `sum b_n` diverges.


For the given series `sum_(n=1)^oo ln((n+1)/n)` , we let `b_n= ln((n+1)/n)` .


  Let `a_n= ln(1/n)` since  `ln(1/n) lt= ln((n+1)/n)`...

To determine if the series `sum_(n=1)^oo ln((n+1)/n)` converges or diverges, we may apply the Direct Comparison Test.


Direct Comparison test is applicable when `sum a_n` and `sum b_n` are both positive series for all n where `a_n lt=b_n` .


If `sum b_n` converges then`sum a_n` converges.


If `sum a_n` diverges so does the `sum b_n` diverges.


For the given series `sum_(n=1)^oo ln((n+1)/n)` , we let `b_n= ln((n+1)/n)` .


  Let `a_n= ln(1/n)` since  `ln(1/n) lt= ln((n+1)/n)` .


To evaluate if the series `sum_(n=1)^oo ln(1/n)` converges or diverges, we may apply Divergence test:


`lim_(n-gtoo) a_n !=0` or does not exist then the series` sum a_n` diverges 


We set-up the limit as:


`lim_(n-gtoo)ln(1/n) =lim_(n-gtoo)ln(n^(-1))`


                         ` = (-1)lim_(n-gtoo) ln(n)`


                         ` = -oo`


With the limit value `L =-oo` , it satisfy `lim_(n-gtoo) a_n !=0` .``


Thus, the series `sum_(n=1)^oo ln(1/n)` diverges      


Conclusion based from Direct Comparison test:


The series`sum_(n=1)^oo a_n = sum_(n=1)^oo ln(1/n)`  diverges then it follows that `sum_(n=1)^oo b_n =sum_(n=1)^oo ln((n+1)/n)` also diverges.

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...