Sunday, 27 September 2015

`int x^3e^x dx` Find the indefinite integral

To evaluate the integral:` int x^3e^x dx` , we may apply "integration by parts": `int u *dv = uv- int vdu` .


Let: `u= x^3` then `du = 3x^2 dx`


     ` dv = e^x dx`  then `v = int e^x dx = e^x` .



Apply the formula for integration by parts, we get:


`int x^3e^x dx = x^3 e^x - int 3x^2e^xdx` .


               ...

To evaluate the integral:` int x^3e^x dx` , we may apply "integration by parts": `int u *dv = uv- int vdu` .


Let: `u= x^3` then `du = 3x^2 dx`


     ` dv = e^x dx`  then `v = int e^x dx = e^x` .



Apply the formula for integration by parts, we get:


`int x^3e^x dx = x^3 e^x - int 3x^2e^xdx` .


                   `= x^3 e^x - 3 int x^2e^xdx.`


 To evaluate` int x^2 e^x dx` , we apply another set of integration by parts.


Let:    `u = x^2` then `du = 2x dx`


        `v=e^x dx` then `dv = e^x`


The integral becomes: 


`int x^2 e^x dx =x^2e^x - int 2xe^x dx`


Another set of integration by parts by letting:


`u = 2x` then `du =2dx`


`v=e^x dx` then `dv = e^x`


`int 2xe^x dx = 2xe^x - int 2e^x dx`


                    `= 2xe^x -2 e^x +C`


 Using `int 2xe^x dx =2xe^x - 2e^x +C` , we get:


`int x^2 e^x dx =x^2e^x - int 2xe^x dx`


                    `=x^2e^x - [2xe^x - 2e^x ]+C`


                    `=x^2e^x - 2xe^x + 2e^x +C`


Then,


 `int x^3e^x dx = x^3 e^x - 3 int x^2e^xdx` .


                      ` = x^3 e^x - 3 [x^2e^x - 2xe^x + 2e^x] +C`


                     `= x^3 e^x - 3x^2e^x +6xe^x -6 e^x +C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...