Wednesday, 30 September 2015

`y = 1/2 (xsqrt(4-x^2) + 4arcsin(x/2))` Find the derivative of the function

The derivative of y in terms of x is denoted by  `d/(dx)y` or `y'` .

 For the given problem: `y =1/2[xsqrt(4-x^2)+4arcsin(x/2)]` , we apply the basic derivative property:


`d/(dx) c*f(x) = c d/(dx) f(x)` .


Then,


`d/(dx)y =d/(dx) 1/2[xsqrt(4-x^2)+4arcsin(x/2)]`


`y’ =1/2 d/(dx) [xsqrt(4-x^2)+4arcsin(x/2)]`



Apply the basic differentiation property: `d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)`


`y’ =1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`



For the derivative of `d/(dx) (xsqrt(4-x^2))` , we apply the Product Rule: `d/(dx)(u*v) = u’*v =+u*v’` .


`d/(dx) (xsqrt(4-x^2))= d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`



Let `u=x` then `u'= 1`


    `v= sqrt(4-x^2) ` then `v' =-x/ sqrt(4-x^2)`


Note: `d/(dx) sqrt(4-x^2) = d/(dx)(4-x^2)^(1/2)`


Applying the chain rule of derivative:


`d/(dx)(4-x^2)^(1/2)= 1/2(4-x^2)^(-1/2)*(-2x)`


                     ` =-x(4-x^2)^(-1/2)`


                    `=-x/(4-x^2)^(1/2)`  or - `–x/sqrt(4-x^2)`


 Following the Product Rule, we set-up the derivative as:


`d/(dx)(x) *sqrt(4-x^2)+ x * d/(dx) (sqrt(4-x^2))`


`= 1 * sqrt(4-x^2)+ x*(-x/sqrt(4-x^2))`


`= sqrt(4-x^2)-x^2/sqrt(4-x^2)`


 Express as one fraction:


`sqrt(4-x^2)* sqrt(4-x^2)/ sqrt(4-x^2)-x^2/sqrt(4-x^2)`


`=( sqrt(4-x^2))^2/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`


`=( 4-x^2)/ sqrt(4-x^2) –x^2/sqrt(4-x^2)`


`=( 4-x^2-x^2)/ sqrt(4-x^2)`


`=( 4-2x^2)/ sqrt(4-x^2)`



Then, `d/(dx) (xsqrt(4-x^2))= ( 4-2x^2)/ sqrt(4-x^2)`



For the derivative of `d/(dx) (4arcsin(x/2))` , we apply the basic derivative property: `d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx) (4arcsin(x/2))= 4 d/(dx) (arcsin(x/2))`


Apply the basic derivative formula for inverse sine function: `d/(dx) (arcsin(u))= (du)/sqrt(1-u^2)` .


Let `u =x/2` then `du=1/2`


`4d/(dx) (4arcsin(x/2))]= 4*(1/2)/sqrt(1-(x/2)^2)`


                    `= 2/sqrt(1-(x^2/4))`


                    ` =2/sqrt(1*4/4-(x^2/4))`


                     ` = 2/sqrt((4-x^2)/4)`


                    ` = 2/ (sqrt(4-x^2)/sqrt(4))`


                   `=2/ (sqrt(4-x^2)/2)`


                   `=2*2/sqrt(4-x^2)`


                   `=4/sqrt(4-x^2)`




Combining the results, we get:


`y' = 1/2[d/(dx) (xsqrt(4-x^2))+ d/(dx) (4arcsin(x/2))]`


`=1/2[( 4-2x^2)/ sqrt(4-x^2)+4/sqrt(4-x^2)]`


`=1/2[( 4-2x^2+4)/ sqrt(4-x^2)]`


` =1/2[( -2x^2+8)/ sqrt(4-x^2)]`


` =1/2[( 2(-x^2+4))/ sqrt(4-x^2)]`


` =(-x^2+4)/ sqrt(4-x^2)]`


or `y'=(4-x^2)/ sqrt(4-x^2)]`



Applying Law of Exponents:  ` x^n/x^m= x^n-m` :


`y' =(4-x^2)/ sqrt(4-x^2)`


` =(4-x^2)^1/ (4-x^2)^(1/2)`


` =(4-x^2)^(1-1/2)`


`=(4-x^2)^(1/2)`


Final answer:


`y'=(4-x^2)^(1/2)`


 or


`y'=sqrt(4-x^2)`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...