Monday, 3 August 2015

`y = 1/2 (1/2ln((x+1)/(x-1)) + arctanx)` Find the derivative of the function

The derivative of y in terms of x is denoted by  `(dy)/(dx)` or `y’` .


 For the given problem: `y = 1/2(1/2ln((x+1)/(x-1)) +arctan(x))` , we may apply the basic differentiation property: `d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx)y =d/(dx) 1/2[1/2ln((x+1)/(x-1)) +arctan(x)]`


`y'=1/2d/(dx) [1/2ln((x+1)/(x-1)) +arctan(x)]`


Apply the basic differentiation property: `d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)`


`y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]`


For the derivative of `d/(dx)(1/2ln((x+1)/(x-1)))` , we may apply again the basic derivative property:`d/(dx) c*f(x)...

The derivative of y in terms of x is denoted by  `(dy)/(dx)` or `y’` .


 For the given problem: `y = 1/2(1/2ln((x+1)/(x-1)) +arctan(x))` , we may apply the basic differentiation property: `d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx)y =d/(dx) 1/2[1/2ln((x+1)/(x-1)) +arctan(x)]`


`y'=1/2d/(dx) [1/2ln((x+1)/(x-1)) +arctan(x)]`


Apply the basic differentiation property: `d/(dx) (u+v) = d/(dx) (u) + d/(dx) (v)`


`y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]`


For the derivative of `d/(dx)(1/2ln((x+1)/(x-1)))` , we may apply again the basic derivative property:`d/(dx) c*f(x) = c d/(dx) f(x)` .


`d/(dx) (1/2ln((x+1)/(x-1)))=1/2d/(dx) (ln((x+1)/(x-1)))`


For the derivative part, follow the basic derivative formula for natural logarithm function: `d/(dx) ln(u)= (du)/u` .


 Let `u =(x+1)/(x-1)` then `du = -2/(x-1)^2` .


 Note For the derivative of `u=(x+1)/(x-1)` ,we apply the Quotient Rule: `d/(dx)(f/g) = (f'*g-f*g')/g^2` .


Let:


`f= (x+1)` then `f'=1`


`g=(x-1)` then `g'=1`


Then,


`d/(dx)((x+1)/(x-1))= (1*(x-1)-(x+1)*(1))/(x-1)^2`


                ` =((x-1)-(x+1))/(x-1)^2`


                 ` =(x-1-x-1)/(x-1)^2`


                ` =(-2)/(x-1)^2`


Applying: `d/(dx) ln(u)= (du)/u` on:


`1/2d/(dx)(ln((x+1)/(x-1)))= (1/2) *(((-2)/(x-1)^2))/(((x+1)/(x-1)))`


                                     `=(1/2) *((-2)/(x-1)^2)*(x-1)/(x+1)`


                                     `=(-2(x-1))/(2(x-1)^2(x+1))`


Cancel common factors 2 and `(x-1)` from top and bottom:


`(-2(x-1))/(2(x-1)^2(x+1)) =-1/((x-1)(x+1))`


Recall `(x-1)*(x+1) = x^2-x+x-1 = x^2-1` then the derivative becomes:


`1/2d/(dx)(ln((x+1)/(x-1)))=-1/(x^2-1)`



For the derivative of `d/(dx)(arctan(x))` , we apply basic derivative formula for inverse tangent:


`d/(dx)(arctan(x))=1/(x^2+1)`



Combining the results, we get:


`y'=1/2[d/(dx) (1/2ln((x+1)/(x-1))) +d/(dx)(arctan(x))]`


`y'=(1/2) [-1/(x^2-1) +1/(x^2+1)]`


`y' =(1/2) [-1/(x^2-1) *(x^2+1)/(x^2+1) +1/(x^2+1)*(x^2-1)/(x^2-1)]`


`y' =(1/2) [(-(x^2+1) +(x^2-1))/((x^2-1) (x^2+1))]`


`y' =(1/2) [(-x^2-1+x^2-1)/((x^2-1) (x^2+1))]`


`y' =(1/2) [(-2)/((x^2-1) (x^2+1))]`


`y' =(-1)/((x^2-1) (x^2+1))`


or


`y'= (-1)/(x^4-1)`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...