Friday 4 September 2015

`sum_(n=2)^oo lnn/n^p` Find the positive values of p for which the series converges.

To find the convergence of the series `sum_(n=2)^oo (ln(n))/n^p` where `pgt0` (positive values of `p` ), we may apply integral test.


Integral test is applicable if f is positive, continuous, and decreasing function on an interval and let `a_n=f(x).` Then the infinite series `sum_(n=k)^oo a_n` converges if and only if the improper integral `int_k^oo f(x) dx` converges to a real number. If the integral diverges then the series also diverges.


For the infinte series series `sum_(n=2)^oo (ln(n))/n^p...

To find the convergence of the series `sum_(n=2)^oo (ln(n))/n^p` where `pgt0` (positive values of `p` ), we may apply integral test.


Integral test is applicable if f is positive, continuous, and decreasing function on an interval and let `a_n=f(x).` Then the infinite series `sum_(n=k)^oo a_n` converges if and only if the improper integral `int_k^oo f(x) dx` converges to a real number. If the integral diverges then the series also diverges.


For the infinte series series `sum_(n=2)^oo (ln(n))/n^p ` , we have:


`a_n =(ln(n))/n^p`


Then, `f(x) =(ln(x))/x^p`


The `f(x)` satisfies the conditions for integral test when `pgt0` . We set-up the improper integral as:


`int_2^oo (ln(x))/x^pdx`


Apply integration by parts: `int u dv = uv - int v du.`


Let: `u=ln(x)` then `du = 1/xdx`


       `dv = 1/x^p dx`


Then , `v = int dv`


              `=int 1/x^p dx `


              `= int x^(-p) dx`


             `= x^(-p+1)/(-p+1)`


The indefinite integral will be:


`int (ln(x))/x^pdx = ln(x)x^(-p+1)/(-p+1)- intx^(-p+1)/(-p+1) *1/x dx`


                    `= ln(x)x^(-p+1)/(-p+1)-1/(-p+1) int (x^(-p)x)/x dx`


                   `= ln(x)x^(-p+1)/(-p+1)-1/(-p+1) intx^(-p) dx `        


                  `= ln(x)x^(-p+1)/(-p+1)-1/(-p+1) *x^(-p+1)/(-p+1)`


                  ` =(ln(x)x^(-p+1))/(-p+1)-x^(-p+1)/(-p+1)^2`


                  `=(ln(x)x^(-p+1))/(-p+1)*(-p+1)/(-p+1)-x^(-p+1)/(-p+1)^2`


                  `=(ln(x)x^(-p+1)(-p+1))/(-p+1)^2-x^(-p+1)/(-p+1)^2`


                 `=(ln(x)x^(-p+1)(-p+1)-x^(-p+1))/(-p+1)^2|_2^oo`


The definite integral will only be finite if `1-p<0 or pgt1` .


Thus, the series  `sum_(n=2)^oo(ln(n))/n^p` converges when `pgt1` .

No comments:

Post a Comment

In &quot;By the Waters of Babylon,&quot; under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...