Given` 3(y-4x^2)dx + xdy = 0`
=>` 3y - 12x^2 +xdy/dx=0`
=>` ( 3y - 12x^2)/x +dy/dx=0`
=>` 3y/x - 12x +dy/dx=0`
=> `y'+(3/x)y=12x`
when the first order linear ordinary differential equation has the form of
`y'+p(x)y=q(x)`
then the general solution is ,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/ e^(int p(x) dx) `
so,
` y'+(3/x)y=12x--------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = (3/x) and q(x)=12x`
so on solving with the above general...
Given` 3(y-4x^2)dx + xdy = 0`
=>` 3y - 12x^2 +xdy/dx=0`
=>` ( 3y - 12x^2)/x +dy/dx=0`
=>` 3y/x - 12x +dy/dx=0`
=> `y'+(3/x)y=12x`
when the first order linear ordinary differential equation has the form of
`y'+p(x)y=q(x)`
then the general solution is ,
`y(x)=((int e^(int p(x) dx) *q(x)) dx +c)/ e^(int p(x) dx) `
so,
` y'+(3/x)y=12x--------(1)`
`y'+p(x)y=q(x)---------(2)`
on comparing both we get,
`p(x) = (3/x) and q(x)=12x`
so on solving with the above general solution we get:
y(x)=`((int e^(int p(x) dx) *q(x)) dx +c)/ e^(int p(x) dx)`
=`(int e^(int (3/x) dx) *((12x)) dx +c)/e^(int (3/x) dx)`
first we shall solve
`e^(int (3/x) dx)=e^(ln(x^3))=x^3`
so proceeding further, we get
y(x) =`(int e^(int (3/x) dx) *((12x)) dx +c)/e^(int (3/x) dx)`
=`(int x^3 *((12x)) dx +c)/x^3`
=`(int 12x^4 dx +c)/x^3`
`=(12x^5/5 +c ) /x^3`
so `y=(12x^5/5 +c )/x^3`
No comments:
Post a Comment