Friday, 15 November 2013

`int sqrt(4+x^2) dx` Find the indefinite integral


Given to solve,


`int sqrt(4+x^2) dx`


using the Trig Substitutions we can solve these type of integrals easily and the solution is as follows



for `sqrt(a+bx^2) ` we can take `x= sqrt(a/b) tan(u)`


so ,For


`int sqrt(4+x^2) dx`


the` x= sqrt(4/1)tan(u)= 2tan(u)`


=> `dx= 2sec^(2) (u) du`


so,


`int sqrt(4+x^2) dx`


= `int sqrt(4+(2tan(u))^2) (2sec^(2) (u) du)`


= `int sqrt(4+4(tan(u))^2) (2sec^(2) (u) du)`


=`int sqrt(4(1+(tan(u))^2)) (2sec^(2) (u) du)`


= `int 2sqrt(1+tan^2(u))(2sec^(2) (u) du)`


...


Given to solve,


`int sqrt(4+x^2) dx`


using the Trig Substitutions we can solve these type of integrals easily and the solution is as follows



for `sqrt(a+bx^2) ` we can take `x= sqrt(a/b) tan(u)`


so ,For


`int sqrt(4+x^2) dx`


the` x= sqrt(4/1)tan(u)= 2tan(u)`


=> `dx= 2sec^(2) (u) du`


so,


`int sqrt(4+x^2) dx`


= `int sqrt(4+(2tan(u))^2) (2sec^(2) (u) du)`


= `int sqrt(4+4(tan(u))^2) (2sec^(2) (u) du)`


=`int sqrt(4(1+(tan(u))^2)) (2sec^(2) (u) du)`


= `int 2sqrt(1+tan^2(u))(2sec^(2) (u) du)`


= `int 2sec(u)(2sec^(2) (u) du)`


= `int 4sec^(3) (u) du`


`= 4int sec^(3) (u) du`


by applying the Integral Reduction


`int sec^(n) (x) dx`


`= (sec^(n-1) (x) sin(x))/(n-1) + ((n-2)/(n-1)) int sec^(n-2) (x) dx`


so ,


`4int sec^(3) (u) du`


= `4[(sec^(3-1) (u) sin(u))/(3-1) + ((3-2)/(3-1)) int sec^(3-2) (u)du]`


= `4[(sec^(2) (u) sin(u))/(2) + ((1)/(2)) int sec (u)du]`


=`4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]`


but` x= 2tan(u)`


=>` x/2 = tan(u)`


`u = tan^(-1) (x/2)`


so,


`4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]`


`=4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln(tan( tan^(-1) (x/2))+sec( tan^(-1) (x/2))))]`


=`4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln((x/2))+sec( tan^(-1) (x/2)))] +c`





No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...