Given to solve,
`int sqrt(4+x^2) dx`
using the Trig Substitutions we can solve these type of integrals easily and the solution is as follows
for `sqrt(a+bx^2) ` we can take `x= sqrt(a/b) tan(u)`
so ,For
`int sqrt(4+x^2) dx`
the` x= sqrt(4/1)tan(u)= 2tan(u)`
=> `dx= 2sec^(2) (u) du`
so,
`int sqrt(4+x^2) dx`
= `int sqrt(4+(2tan(u))^2) (2sec^(2) (u) du)`
= `int sqrt(4+4(tan(u))^2) (2sec^(2) (u) du)`
=`int sqrt(4(1+(tan(u))^2)) (2sec^(2) (u) du)`
= `int 2sqrt(1+tan^2(u))(2sec^(2) (u) du)`
...
Given to solve,
`int sqrt(4+x^2) dx`
using the Trig Substitutions we can solve these type of integrals easily and the solution is as follows
for `sqrt(a+bx^2) ` we can take `x= sqrt(a/b) tan(u)`
so ,For
`int sqrt(4+x^2) dx`
the` x= sqrt(4/1)tan(u)= 2tan(u)`
=> `dx= 2sec^(2) (u) du`
so,
`int sqrt(4+x^2) dx`
= `int sqrt(4+(2tan(u))^2) (2sec^(2) (u) du)`
= `int sqrt(4+4(tan(u))^2) (2sec^(2) (u) du)`
=`int sqrt(4(1+(tan(u))^2)) (2sec^(2) (u) du)`
= `int 2sqrt(1+tan^2(u))(2sec^(2) (u) du)`
= `int 2sec(u)(2sec^(2) (u) du)`
= `int 4sec^(3) (u) du`
`= 4int sec^(3) (u) du`
by applying the Integral Reduction
`int sec^(n) (x) dx`
`= (sec^(n-1) (x) sin(x))/(n-1) + ((n-2)/(n-1)) int sec^(n-2) (x) dx`
so ,
`4int sec^(3) (u) du`
= `4[(sec^(3-1) (u) sin(u))/(3-1) + ((3-2)/(3-1)) int sec^(3-2) (u)du]`
= `4[(sec^(2) (u) sin(u))/(2) + ((1)/(2)) int sec (u)du]`
=`4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]`
but` x= 2tan(u)`
=>` x/2 = tan(u)`
`u = tan^(-1) (x/2)`
so,
`4[(sec^(2) (u) sin(u))/(2) + (1/2) (ln(tan(u)+sec(u)))]`
`=4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln(tan( tan^(-1) (x/2))+sec( tan^(-1) (x/2))))]`
=`4[(sec^(2) ( tan^(-1) (x/2)) sin( tan^(-1) (x/2)))/(2) + (1/2) (ln((x/2))+sec( tan^(-1) (x/2)))] +c`
No comments:
Post a Comment