Monday, 25 November 2013

`int 1/(xsqrt(9x^2+1)) dx` Find the indefinite integral

Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`


 where: `f(x)` as the integrand


           `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


For the given problem `int 1/(xsqrt(9x^2+1)) dx` , it resembles one of the formula from integration table.  We may apply the integral formula for rational function with roots as:


`int dx/(xsqrt(x^2+a^2))= -1/aln((a+sqrt(x^2+a^2))/x)+C`...

Recall that indefinite integral follows the formula: `int f(x) dx = F(x) +C`


 where: `f(x)` as the integrand


           `F(x)` as the anti-derivative function 


           `C`  as the arbitrary constant known as constant of integration


For the given problem `int 1/(xsqrt(9x^2+1)) dx` , it resembles one of the formula from integration table.  We may apply the integral formula for rational function with roots as:


`int dx/(xsqrt(x^2+a^2))= -1/aln((a+sqrt(x^2+a^2))/x)+C` .


 For easier comparison, we  apply u-substitution by letting:  `u^2 =9x^2` or `(3x)^2` then `u = 3x ` or `u/3 =x` .


Note: The corresponding value of `a^2=1` or `1^2` then `a=1` .


For the derivative of `u` , we get: `du = 3 dx` or `(du)/3= dx` .


Plug-in the values on the integral problem, we get:


`int 1/(xsqrt(9x^2+1)) dx =int 1/((u/3)sqrt(u^2+1)) *(du)/3`


                         `=int 3/(usqrt(u^2+1)) *(du)/3`


                         `=int (du)/(usqrt(u^2+1))`


Applying the aforementioned integral formula where `a^2=1` and `a=1` , we get:


`int (du)/(usqrt(u^2+1)) =-1/1ln((1+sqrt(u^2+1))/u)+C`


                  ` =-ln((1+sqrt(u^2+1))/u)+C`


                  `=ln(((1+sqrt(u^2+1))/u)^-1) + C`


                  `=ln(u/(1+sqrt(u^2+1))) + C`


Plug-in `u^2 =9x^2`  and `u =3x` and we get the indefinite integral as:


`int 1/(xsqrt(9x^2+1)) dx=ln((3x)/(1+sqrt(9x^2+1)))+C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...