Monday, 25 November 2013

`int e^(sqrt(2x)) dx` Find the indefinite integral by using substitution followed by integration by parts.

To evaluate the given integral problem` int e^(sqrt(2x))dx ` us u-substituion, we may let:


`u = 2x` then `du = 2 dx` or `(du)/2 = dx` .


Plug-in the values `u = 2x ` and `dx = (du)/2` , we get:


`int e^(sqrt(2x))dx =int e^(sqrt(u))* (du)/2`


Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .


`int e^(sqrt(u))* (du)/2=1/2 int e^(sqrt(u)) du`


Apply another set of substitution, we let:


`w =...

To evaluate the given integral problem` int e^(sqrt(2x))dx ` us u-substituion, we may let:


`u = 2x` then `du = 2 dx` or `(du)/2 = dx` .


Plug-in the values `u = 2x ` and `dx = (du)/2` , we get:


`int e^(sqrt(2x))dx =int e^(sqrt(u))* (du)/2`


Apply the basic integration property: `int c*f(x) dx = c int f(x) dx` .


`int e^(sqrt(u))* (du)/2=1/2 int e^(sqrt(u)) du`


Apply another set of substitution, we let:


`w = sqrt(u)`


Square both sides of `w =sqrt(u)`, we get: `w^2 =u`


Take the derivative on each side, it becomes: `2w dw = du` 


Plug-in `w =sqrt(u)` and `du = 2w dw` , we get: 


`1/2 int e^(sqrt(u)) du =1/2 int e^(w) * 2w dw`


                                     ` = 1/2 * 2 inte^(w) *w dw`


                                     `= int e^w * w dw` .


To evaluate the integral further, we apply integration by parts:`int f* g' = f*g - int g *f'


Let: `f =w` then `f' = dw`


       `g' = e^w dw` then `g = e^w`


Applying the formula for integration by parts, we get:


`int e^w * w dw = w*e^w - int e^w dw`


                       `= we^w -e^w +C`


Recall we let: `w =sqrt(u)` and `u = 2x ` then `w =sqrt(2x)` .


 Plug-in `w=sqrt(2x)` on  `we^w -e^w +C` , we get the complete indefinite integral as:


`int e^(sqrt(2x))dx =sqrt(2x) e^(sqrt(2x)) -e^(sqrt(2x)) +C`

No comments:

Post a Comment

In "By the Waters of Babylon," under the leadership of John, what do you think the Hill People will do with their society?

The best place to look for evidence in regards to what John's plans are for his people is the final paragraphs of the story. John has re...